

Properties of bounded representations for *G***-frames**

A. Najati1 · F. Ghobadzadeh¹ · Y. Khedmati1 · J. Sedghi Moghaddam1

Received: 19 August 2021 / Revised: 19 August 2021 / Accepted: 31 December 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

The purpose of the paper is to analyze *g*-frames of the form $\{\varphi T^i \in B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$, where $T \in B(\mathcal{H})$ and $\varphi \in B(\mathcal{H}, \mathcal{K})$, and discuss the properties of the operator *T*. We consider stability of *g*-Riesz sequences of the form $\{\varphi T^i \in B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$. Finally, a weighted representation of a *g* frame is introduced and some of its properties are presented. We provide a sufficient condition for a given *g*-frame $\Lambda = {\Lambda_i \in \mathbb{R}^n}$ $B(\mathcal{H}, \mathcal{K})\}_{i=1}^{\infty}$ to be represented by an operator $T \in B(\mathcal{H})$ and a sequence $\{a_i\}_{i=1}^{\infty}$.

Keywords Representation of a frame \cdot *g*-Frame \cdot Stability

Mathematics Subject Classification Primary 41A58 · 42C15 · 47A05

1 Introduction

Duffin and Schaeffer introduced frames in separable Hilbert spaces as an extension of orthonormal bases [\[15\]](#page-14-0). A frame does not necessarily contain linear independent vectors. Frames can be viewed as redundant bases which are generalization of orthonormal bases. They provide non-unique representations of vectors in a Hilbert space. The redundancy and flexibility of frames have led to their applications in various fields throughout mathematics and engineering, such as signal and image processing $[4,5,16]$ $[4,5,16]$ $[4,5,16]$, data compression, dynamical sampling $[1,2]$ $[1,2]$ $[1,2]$ and etc.

B A. Najati a.nejati@yahoo.com; a.najati@uma.ac.ir

F. Ghobadzadeh gobadzadehf@yahoo.com

Y. Khedmati khedmati.y@uma.ac.ir

J. Sedghi Moghaddam j.smoghaddam@uma.ac.ir

¹ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran

$$
A_F ||f||^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B_F ||f||^2, \quad f \in \mathcal{H}.
$$

frame for H , if there exist two constants A_F , $B_F > 0$ such that

For background material on frame theory and related topics, we refer readers to [\[6](#page-14-3)[,9,](#page-14-4) [14](#page-14-5)[,17](#page-14-6)[,19\]](#page-14-7).

As introduced in[\[1](#page-13-1)[,2\]](#page-13-2) by Aldroubi et al. dynamic sampling deals with the frame properties of sequences $\{T^i f\}_{i=0}^{\infty}$, where $T : \mathcal{H} \to \mathcal{H}$ belongs to certain classes of linear operators and $f \in \mathcal{H}$.

Frames ${f_i}_{i=1}^{\infty}$ for which a representation of the form ${T^i}_i f_{i=0}^{\infty}$ with a bounded operator *T* , were characterized in [\[11\]](#page-14-8). While all linearly independent frames have a representation $\{T^i f\}_{i=0}^{\infty}$, it is more restrictive to obtain boundedness of the repre-
continuo appearance T , Christmasen at al. [10,12] have above that the sub-frame with senting operator T . Christensen et al. $[10,13]$ $[10,13]$ $[10,13]$ have shown that the only frames with bounded representations are those that are linearly independent and the kernel of their synthesis operators is invariant under right-shift operator $\mathcal{T} : \ell^2 \to \ell^2$ defined by

$$
\mathcal{T}(\{c_i\}_{i=1}^{\infty}) = (0, c_1, c_2, \ldots).
$$

For example, any Riesz sequence $\{f_n\}_{n=1}^{\infty}$ in *H* has the form $\{T^n f_n\}_{n=0}^{\infty}$ for some operator $T \in B(H)$ with closed range.

To study frames of the form $\{a_i T^i f_1\}_{i=0}^{\infty}$, they consider the weighted right-shift operator on $\ell^2(\mathcal{H}) := \left\{ \{c_i\}_{i=1}^{\infty} \subseteq \mathcal{H} : \sum_{i=1}^{\infty} ||c_i||^2 < \infty \right\}$ defined by

$$
\mathcal{T}_{\omega}\big(\{c_i\}_{i=1}^{\infty}\big) = \bigg(0, \frac{a_1}{a_2}c_1, \frac{a_2}{a_3}c_2, \dots\bigg),\,
$$

for a sequence of non-zero scalars $\omega = \{a_i\}_{i=1}^{\infty}$ [\[12](#page-14-11)]. They have also explored the relationship between the representations of a frame and its duals. For the applications of frames, they established that frame representations were preserved under some perturbations. Results [\[2](#page-13-2), Theorem 7] and [\[11](#page-14-8), Proposition 3.5] are shown that the sequence $\{T^i f_1\}_{i=0}^{\infty}$ is not a frame, whenever *T* is unitary or compact. Also, Lemma 2.1 and Proposition 2.3 of [\[27\]](#page-14-12) indicate the range of T is close and give some equivalent conditions for *T* to be surjective.

Sun [\[28](#page-14-13)] introduced a generalization of frames, named *g*-frames which are including some extensions and types of frames such as frames of subspaces [\[8](#page-14-14)], fusion frames [\[7](#page-14-15)], oblique frames [\[3\]](#page-13-3), a class of time-frequency localization operators and generalized translation invariant (GTI) [\[20](#page-14-16)[,21\]](#page-14-17). Therefore, some concepts presented in frames such as duality, stability and Riesz basis were also studied in *g*-frames [\[24](#page-14-18)[,28](#page-14-13)[,29\]](#page-14-19).

Throughout this paper, *J* is countable set, $\mathbb N$ is natural numbers and $\mathbb C$ is complex numbers, H and K are separable Hilbert spaces, Id_H denotes the identity operator on H , $B(H)$ and $GL(H)$ denote the set of bounded linear operators and invertible bounded linear operators on H , respectively. Also, we apply $B(H, K)$ for the set of bounded linear operators from H to K and consider $\varphi, \psi \in B(H, K)$. We use ker *T*

and $\mathcal{R}(T)$ for the null space and range $T \in B(\mathcal{H})$, respectively. Now, we summarize some facts about *g*-frames from [\[25](#page-14-20)[,28](#page-14-13)]. For more on related subjects to *g*-frames, we refer to [\[18](#page-14-21)[,23](#page-14-22)[,26](#page-14-23)].

Definition 1.2 We say that $\Lambda = {\Lambda_i \in B(H, K_i)}_{i=1}^{\infty}$ is a generalized frame for *H* with respect to $\{K_i\}_{i=1}^{\infty}$, or simply *g*-frame, if there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that

$$
A_{\Lambda} ||f||^{2} \leq \sum_{i=1}^{\infty} ||\Lambda_{i} f||^{2} \leq B_{\Lambda} ||f||^{2}, \ f \in \mathcal{H}.
$$
 (1.1)

We call A_{Λ} , B_{Λ} the lower and upper *g*-frame bounds, respectively. A is called a tight *g*-frame if $A_{\Lambda} = B_{\Lambda}$, and a Parseval *g*-frame if $A_{\Lambda} = B_{\Lambda} = 1$. A family Λ is called *g*-Bessel if the right hand inequality in [\(1.1\)](#page-2-0) holds for all $f \in H$, in this case, B_{Λ} is called the *g*-Bessel bound.

Example 1.3 [\[28\]](#page-14-13) Let $\{f_i\}_{i=1}^{\infty}$ be a frame for H . Suppose that $\Lambda = \{\Lambda_i \in B(H, \mathbb{C})\}_{i=1}^{\infty}$, where

$$
\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H}.
$$

It is easy to see that Λ is a *g*-frame.

For a *g*-frame Λ , there exists a unique positive and invertible operator $S_\Lambda : \mathcal{H} \to \mathcal{H}$ such that

$$
S_{\Lambda}f = \sum_{i=1}^{\infty} \Lambda_i^* \Lambda_i f, \quad f \in \mathcal{H},
$$

and $A_{\Lambda} \cdot Id_{\mathcal{H}} \leq S_{\Lambda} \leq B_{\Lambda} \cdot Id_{\mathcal{H}}$. The operator S_{Λ} is called the *g*-frame operator for A. For a family $\{K_i\}_{i=1}^{\infty}$ of Hilbert spaces, consider the space

$$
\bigoplus_{i=1}^{\infty} \mathcal{K}_i = \Big\{ \{g_i\}_{i=1}^{\infty} : g_i \in \mathcal{K}_i, \quad \sum_{i=1}^{\infty} \|g_i\|^2 < \infty \Big\}.
$$

For the case $K_i = K$ for all *i*, we use $\ell^2(K)$ instead of $\bigoplus_{i=1}^{\infty} K_i$. It is clear that $\bigoplus_{i=1}^{\infty} K_i$ is a Hilbert space with pointwise operations and with the inner product given by

$$
\langle \{f_i\}_{i=1}^{\infty}, \{g_i\}_{i=1}^{\infty} \rangle = \sum_{i=1}^{\infty} \langle f_i, g_i \rangle.
$$

For a *g*-Bessel Λ , the synthesis operator $T_{\Lambda}: \bigoplus_{i=1}^{\infty} \mathcal{K}_i \to \mathcal{H}$ is defined by

$$
T_{\Lambda}\big(\{g_i\}_{i=1}^{\infty}\big)=\sum_{i=1}^{\infty}\Lambda_i^*g_i.
$$

The analysis operator $T_{\Lambda}^* : \mathcal{H} \to \bigoplus_{i=1}^{\infty} \mathcal{K}_i$, adjoint of T_{Λ} , is given by

$$
T_{\Lambda}^* f = {\{\Lambda_i f\}}_{i=1}^{\infty}, \quad f \in \mathcal{H}.
$$

It is obvious that $S_A = T_A T_A^*$. For a *g*-frame $\Lambda = {\Lambda_i \in B(H, K_i)}_{i=1}^{\infty}$, the sequence $\widetilde{\Lambda} = {\{\widetilde{\Lambda} := \Lambda_i S_{\Lambda}^{-1} \in B(\mathcal{H}, \mathcal{K}_i)\}_{i=1}^{\infty}}$, which is called canonical dual of Λ , is a *g*frame with lower and upper *g*-frame bounds $\frac{1}{B_A}$ and $\frac{1}{A_A}$, respectively. For *g*-Bessel sequences Λ and Θ , we consider $S_{\Lambda\Theta} := T_{\Lambda} T_{\Theta}^*$.

Definition 1.4 Consider a sequence $\Lambda = {\Lambda_i \in B(H, K_i)}_{i=1}^{\infty}$.

- (i) We say that Λ is *g*-complete if $\bigcap_{i=1}^{\infty}$ ker $\Lambda_i = \{0\}$.
- (ii) We say that Λ is a *g*-Riesz sequence if there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} <$ ∞ such that for any finite sequence $\{g_i\}_{i=1}^n$,

$$
A_{\Lambda} \sum_{i=1}^{n} \|g_{i}\|^{2} \leq \left\| \sum_{i=1}^{n} \Lambda_{i}^{*} g_{i} \right\|^{2} \leq B_{\Lambda} \sum_{i=1}^{n} \|g_{i}\|^{2}, \quad g_{i} \in \mathcal{K}_{i}.
$$

- (iii) We say that Λ is a *g*-Riesz basis if Λ is *g*-complete and *g*-Riesz sequence.
- (iv) We say that Λ is a *g*-orthonormal basis if it satisfies the following:

$$
\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in \mathbb{N}, g_i \in \mathcal{K}_i, g_j \in \mathcal{K}_j,
$$

$$
\sum_{i=1}^{\infty} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.
$$

A *g*-Riesz basis $\Lambda = {\Lambda_i \in B(H, K_i)}_{i=1}^{\infty}$ is *g*-biorthonormal with respect to its canonical dual $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i)}_{i=1}^{\infty}$ in the following sense

$$
\langle \Lambda_i^* g_i, \widetilde{\Lambda_j}^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in \mathbb{N}, g_i \in \mathcal{K}_i, g_j \in \mathcal{K}_j. \tag{1.2}
$$

Theorem 1.5 [\[26](#page-14-23)] *Let* $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i)}_{i=1}^{\infty}$ *be a g-frame and* $\Theta = {\Theta_i \in B(H, \mathcal{K}_i)}_{i=1}^{\infty}$ $B(\mathcal{H}, \mathcal{K}_i)$ [∞] $i=1$ *be a g-orthonormal basis. Then there is an onto bounded operator* $V : \mathcal{H} \to \mathcal{H}$ *such that* $\Lambda_i = \Theta_i V^*$ *, for all* $i \in \mathbb{N}$ *. If* Λ *is a g-Riesz basis, then V is invertible. If is a g-orthonormal basis, then V is unitary.*

Theorem 1.6 [\[28](#page-14-13)] *Let for* $i \in \mathbb{N}$, $\{e_{i,j}\}_{j \in J_i}$ *be an orthonormal basis for* K_i *. The sequence* $\Lambda = {\Lambda_i \in B(H, K_i)}_{i=1}^{\infty}$ *is a g-frame (respectively, g-Bessel family,* g -Riesz basis, g -orthonormal basis) if and only if $\{\Lambda_i^* e_{i,j}\}_{i \in \mathbb{N}, j \in J_i}$ is a frame (respec*tively, Bessel sequence, Riesz basis, orthonormal basis).*

Now we summarize some results of article [\[22](#page-14-24)] in which we generalize the results of articles [\[10](#page-14-9)[,11](#page-14-8)] to introduce the representation of *g*-frames with bounded operators.

Definition 1.7 Let *T* ∈ *B*(*H*). We say that a *g*-frame $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ has a representation *T* if $\Lambda_i = \Lambda_1 T^{i-1}$ for all $i \in \mathbb{N}$. In the affirmative case, we say that Λ is represented by *T* .

Remark 1.8 Let $T \in B(H)$. Consider the frame $F = \{f_i\}_{i=1}^{\infty} = \{T^i f_1\}_{i=0}^{\infty}$ for *H*, and the *g*-frame $\Lambda = {\Lambda_i \in B(H, \mathbb{C})}_{i=1}^{\infty}$, where $\Lambda_i f = \langle f, f_i \rangle$ for each $i \in \mathbb{N}$. It is clear that

$$
\Lambda_{i+1}f = \langle f, f_{i+1} \rangle = \langle f, Tf_i \rangle = \langle T^*f, f_i \rangle = \Lambda_i T^*f, \quad f \in \mathcal{H}.
$$

Therefore, $\Lambda_i = \Lambda_1(T^*)^{i-1}$ for all $i \in \mathbb{N}$, i.e., Λ is represented by T^* . Conversely, if $T \in B(\mathcal{H})$ and $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathbb{C})}_{i=1}^{\infty} = {\Lambda_1 T^i}_{i=0}^{\infty}$ is a *g*-frame for \mathcal{H} , then by Riesz Representation Theorem there exists a sequence $\{f_i\}_{i=1}^{\infty}$ (which is a frame for $2\triangle$) such that *H*) such that

$$
f_i = (T^*)^{i-1} f_1, \ \ \Lambda_i f = \langle f, f_i \rangle, \ \ f \in \mathcal{H}, \ i \in \mathbb{N}.
$$

The following theorem provides a sufficient condition for a given *g*-frame to be represented by an operator *T* . This theorem is a special case of Theorem [3.2.](#page-11-0)

Theorem 1.9 [\[22](#page-14-24)] *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *be a g-frame such that if* $\sum_{i=1}^{n} \Lambda_i^* a_i = 0$ for some $n \in \mathbb{N}$ than $a_i = 0$ for every $1 \le i \le n$. Suppose that $\sum_{i=1}^{n} \Lambda_i^* g_i = 0$ *for some* $n \in \mathbb{N}$ *, then* $g_i = 0$ *for every* $1 \le i \le n$ *. Suppose that* ker T_{Λ} *is invariant under the right-shift operator. Then* Λ *is represented by* $T \in B(H)$ *,* $where \n\|T\| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}.$

Corollary 1.10 [\[22](#page-14-24)]*Every g-orthonormal basis and g-Riesz basis has a representation.*

Remark 1.11 [\[22](#page-14-24)] Consider a *g*-frame $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ which is represented by *T*. For $S \in GL(H)$, the family $\Lambda S = {\Lambda_i} S \in B(H, K)$, $\sum_{i=1}^{\infty}$ is a *g*-frame [\[26,](#page-14-23) Corollary 2.26], which is represented by *S*−1*T S*.

In this paper, we generalize some recent results of $[11,27]$ $[11,27]$ $[11,27]$ to obtain some properties of the operator *T* ∈ *B*(*H*) in a *g*-frame { φT^i ∈ *B*(*H*, *K*)}[∞]_{*i*=0}. We also generalize some results of [\[12](#page-14-11)[,27\]](#page-14-12) by introducing and investigating weighted representations for *g*-frames.

2 *G***-Frame representation properties**

In this section, some properties of $T \in B(\mathcal{H})$ are provided when $\{\varphi T^i \in B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$ is a *g*-frame.

Theorem 2.1 *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *be a g-frame represented by T. Then*
 $T(T^*) = T(T^*)^T T(T^*)$ $R(T^*) = \overline{\text{span}}\{T^*\Lambda_i^*e_j : j \in J\}_{i=1}^\infty$, where $\{e_j\}_{j \in J}$ *is an orthonormal basis for K. In particular,* $R(T^*)$ *and* $R(T)$ *are closed.*

Proof By Theorem [1.6,](#page-3-0) $\{\Lambda_i^* e_j : j \in J\}_{i=1}^{\infty}$ is a frame for *H*, and so for every $f \in \mathcal{H}$, we have

$$
T^* f = T^* \left(\sum_{i=1}^{\infty} \sum_{j \in J} c_{ij} \Lambda_i^* e_j \right) = \sum_{i=1}^{\infty} \sum_{j \in J} c_{ij} T^* \Lambda_i^* e_j.
$$

Thus, $\mathcal{R}(T^*) \subseteq \overline{\text{span}}\{T^*\Lambda_i^*e_j : j \in J\}_{i=1}^{\infty} := \mathcal{H}_0$. On the other hand, since *{T*^{*} $\Lambda_i^* e_j$: *j* ∈ *J* } $\sum_{i=1}^{\infty}$ = { $\Lambda_{i+1}^* e_j$: *j* ∈ *J* } $\sum_{i=1}^{\infty}$ is a frame for \mathcal{H}_0 , we have

$$
g = \sum_{i=1}^{\infty} \sum_{j \in J} d_{ij} T^* \Lambda_i^* e_j = T^* \left(\sum_{i=1}^{\infty} \sum_{j \in J} d_{ij} \Lambda_i^* e_j \right), \quad g \in \mathcal{H}_0.
$$

Then $\mathcal{R}(T^*) = \mathcal{H}_0$ is closed and so $\mathcal{R}(T)$ is closed.

Proposition 2.2 *Let* $\Lambda = {\varphi T^{i} \in B(\mathcal{H}, \mathcal{K})}_{i=0}^{\infty}$ *be a g-frame such that* $\|\varphi\| < \sqrt{A_{\Lambda}}$. *Then T is injective.*

Proof We have

$$
A_{\Lambda} ||f||^{2} \leq \sum_{i=0}^{\infty} ||\varphi T^{i} f||^{2} \leq ||\varphi||^{2} \left(||f||^{2} + \sum_{i=1}^{\infty} ||T^{i} f||^{2} \right), \quad f \in \mathcal{H}.
$$

Thus $\|\varphi\|^2 \sum_{i=1}^{\infty} \|T^i f\|^2 \ge (A_\Lambda - \|\varphi\|^2) \|f\|^2$ and since $\|\varphi\| < \sqrt{A_\Lambda}$, we infer that *T* is injective. \square

The following example shows that, the other implication of Proposition [2.2](#page-5-0) is not satisfied. Also, we give an example which is satisfied in Proposition [2.2](#page-5-0) condition.

Example 2.3 (i) For $\varphi = 3Id_{\mathcal{H}}$ and $T = \frac{1}{2}Id_{\mathcal{H}}$, we get the tight *g*-frame $\Lambda =$ ${\varphi T}^i \in B(\mathcal{H})\}_{i=0}^{\infty}$ with $\|\varphi\| > \sqrt{A_{\Lambda}}$.

(ii) For $\varphi = Id_{\mathcal{H}}$ and $T = \frac{1}{2}Id_{\mathcal{H}}$, we get the tight *g*-frame $\Lambda = {\varphi T^{i} \in B(\mathcal{H})}_{i=0}^{\infty}$ with $\|\varphi\| < \sqrt{A_\Lambda}$.

Theorem 2.4 *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *be a g-frame represented by T. Then the following are equivalent:*

(i) T is injective. (iii) $\mathcal{R}(S_{\Lambda}^{-1}\Lambda_1^*)$ ∩ ker $T = \{0\}$ *.* (iii) $\mathcal{R}(\Lambda_1^*)$ ⊆ $\mathcal{R}(T^*)$ *.*

Proof (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are clear. (ii) \Rightarrow (i) Suppose that *T* is not injective. Then there exists $0 \neq f \in \text{ker } T$, and we get

$$
f = \sum_{i=1}^{\infty} S_{\Lambda}^{-1} \Lambda_i^* \Lambda_i f = S_{\Lambda}^{-1} \Lambda_1^* \Lambda_1 f + \sum_{i=1}^{\infty} S_{\Lambda}^{-1} \Lambda_{i+1}^* \Lambda_i Tf = S_{\Lambda}^{-1} \Lambda_1^* \Lambda_1 f.
$$

So $f \in \mathcal{R}(S_\Lambda^{-1}\Lambda_1^*)$, which is a contradiction. (iii) \Rightarrow (i) For any $f \in \mathcal{H}$, we have

$$
f = \sum_{i=1}^{\infty} \Lambda_i^* \Lambda_i S_{\Lambda}^{-1} f = \Lambda_1^* \Lambda_1 S_{\Lambda}^{-1} f + \sum_{i=1}^{\infty} T^* \Lambda_i^* \Lambda_{i+1} S_{\Lambda}^{-1} f
$$

$$
= \Lambda_1^* \Lambda_1 S_{\Lambda}^{-1} f + T^* \left(\sum_{i=1}^{\infty} \Lambda_i^* \Lambda_{i+1} S_{\Lambda}^{-1} f \right).
$$

Since $\mathcal{R}(\Lambda_1^*) \subseteq \mathcal{R}(T^*)$, we get $f \in \mathcal{R}(T^*)$. Therefore T^* is surjective, and so T is injective.

The following example shows that the operator representation of a *g*-frame may not be injective.

- *Example 2.5* (i) Let $T \in B(H)$ and $f \in H$ such that $F = {T^i f}_{i=0}^\infty$ be a Riesz hosis for 2.6. Then by [27] Constitution 2.41 T is not multiplying for consideration basis for H . Then by [\[27](#page-14-12), Corollary 2.4], T is not surjective. If we consider $\Lambda = {\Lambda_i \in B(H, \mathbb{C})}_{i=1}^{\infty}$, where $\Lambda_i f = \langle f, T^i f \rangle$, then by Remark [1.8,](#page-4-0) Λ is represented by T^* which is not injective. On the other hand, since $\Lambda_i^*(1) = T^i f$ for any $i \in \mathbb{N}$, by Theorem [1.6,](#page-3-0) Λ is a *g*-Riesz basis.
- (ii) Let \mathcal{H}_0 be a separable real Hilbert space and $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis. Suppose $\Lambda = {\Lambda_i \in B(\mathcal{H}_0, \mathbb{R})}_{i=1}^{\infty}$ such that $\Lambda_i f := \langle f, e_i \rangle$ for all $f \in \mathcal{H}_0$. It is easy to see that Λ is a *g*-orthonormal basis. We have
	- (a) $\sum_{i=1}^{\infty} ||\Delta_i f||^2 = \sum_{i=1}^{\infty} |\langle e_i, f \rangle|^2 = ||f||^2$, $f \in \mathcal{H}_0$;

	(b) $\Delta_i^* \alpha = \alpha e_i$ for all $\alpha \in \mathbb{R}$ and
	-

$$
\left\|\sum_{i=1}^n \Lambda_i^* \alpha_i\right\|^2 = \sum_{i=1}^n |\alpha_i|^2, \quad \{\alpha_i\}_{i=1}^n \subseteq \mathbb{R};
$$

(c) $\langle \Lambda_i^* \alpha, \Lambda_j^* \beta \rangle = \delta_{i,j} \alpha \beta, \quad \alpha, \beta \in \mathbb{R}.$

If we define $V : \mathcal{H}_0 \mapsto \mathcal{H}_0$ by $Vf := \sum_{i=1}^{\infty} \langle f, e_{i+1} \rangle e_i$, then *V* is not injective and $\Lambda_{i+1} = \Lambda_i V$. Then Λ is represented by *V*.

Theorem [1.9](#page-4-1) shows that for a *g*-frame $\Lambda = {\varphi T^{i} \in B(H, K)}_{i=0}^{\infty}$ we have $||T|| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$. The following theorem gives a sufficient condition to get $||T|| \geq 1$. However, there is a *g*-frame $\{\varphi T^i \in B(\mathcal{H})\}_{i=0}^{\infty}$ with $||T|| < 1$ (see Example [2.3\)](#page-5-1).

Theorem 2.6 *Let* $T \in B(\mathcal{H})$ *and* $\varphi \in B(\mathcal{H}, \mathcal{K})$ *such that* $\Lambda = {\varphi T^i \in B(\mathcal{H}, \mathcal{K})}_{i=0}^{\infty}$ *be a g-frame. If* $\bigcap_{i=0}^{n}$ ker $\varphi T^{i} \neq \{0\}$ for each $n \in \mathbb{N}$, then $||T|| \geq 1$.

Proof Let $\varepsilon > 0$, and suppose by contradiction that $||T|| < 1$. Then there exists $N > 0$ such that $\sum_{i=N+1}^{\infty} ||\varphi T^{\hat{i}}||^2 < \varepsilon$. Let $0 \neq f \in \bigcap_{i=0}^{N} \ker \varphi T^i$ with $||f|| = 1$. Then

$$
A_{\Lambda} \le \sum_{i=0}^N \|\varphi T^i f\|^2 + \sum_{i=N+1}^\infty \|\varphi T^i f\|^2 < \varepsilon.
$$

Therefore $A_{\Lambda} = 0$, which is a contradiction.

The main purpose of the reminder of this section is to show that the operator representation of *g*-frames may be compact but can not be unitary.

Theorem 2.7 *Let* $\Lambda = {\varphi T^i \in B(\mathcal{H}, \mathcal{K})}_{i=0}^{\infty}$ *be a g-frame. Then* $T^n f \to 0$ *as* $n \to \infty$ *for every* $f \in \mathcal{H}$ *.*

Proof For every $n \in \mathbb{N}$ and $f \in \mathcal{H}$, we have

$$
A_{\Lambda} ||T^n f||^2 \le \sum_{i=1}^{\infty} ||\varphi T^{i-1+n} f||^2 = \sum_{i=n}^{\infty} ||\varphi T^i f||^2.
$$
 (2.1)

Since $\sum_{i=0}^{\infty} ||\varphi T^i f||^2$ is convergent, we get $\sum_{i=0}^{\infty} ||\varphi T^i f||^2 \to 0$ as $n \to \infty$. There-fore, the inequality [\(2.1\)](#page-7-0) implies that $T^n f \to 0$ as $n \to \infty$.

Corollary 2.8 *For every unitary operator T and every* $\varphi \in B(H, K)$ *, the sequence* $\Lambda = {\varphi T^{i} \in B(H, K)}_{i=0}^{\infty}$ *can not be a g-frame.*

Proof For every $f \in H$,

$$
||f|| = ||(T^*)^n T^n f|| \le ||T^*||^n ||T^n f|| = ||T^n f||. \tag{2.2}
$$

If Λ is a *g*-frame, then by Theorem [2.7,](#page-6-0) $T^n f \to 0$ as $n \to \infty$, and so by the inequality (2.2) we get $f = 0$ which is a contradiction (2.2) , we get $f = 0$ which is a contradiction.

Example [2.3](#page-5-1) shows that the representation of a *g*-frame can be normal operator.

Corollary 2.9 *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *and* $\Theta = {\Theta_i \in B(H, K)}_{i=1}^{\infty}$ *be two g-orthonormal bases. Then for every* $\varphi \in B(H,\mathcal{K})$, the sequence $\Gamma = {\varphi S_{\Lambda\Theta}^{i-1} \in S_{\Lambda\Theta}^{i-1}}$ $B(\mathcal{H}, \mathcal{K})\}_{i=1}^{\infty}$ *is not a g-frame.*

Proof By Theorem [1.5,](#page-3-1) there exists a unitary operator $U \in B(H)$ such that $\Theta_i = \Lambda_i U$. Then $T_{\Theta} = U^* T_{\Lambda}$ and

$$
S_{\Lambda\Theta}S_{\Lambda\Theta}^* = T_{\Lambda}T_{\Theta}^*T_{\Theta}T_{\Lambda}^* = T_{\Lambda}T_{\Lambda}^*UU^*T_{\Lambda}T_{\Lambda}^* = S_{\Lambda}Id_{\mathcal{H}}S_{\Lambda} = Id_{\mathcal{H}}.
$$

Similary, we get $S^*_{\Lambda\Theta}S_{\Lambda\Theta} = Id_{\mathcal{H}}$. So $S_{\Lambda\Theta}$ is a unitary operator on \mathcal{H} and by Corollary [2.8,](#page-7-2) Γ is not a *g*-frame for every $\varphi \in B(H, K)$.

Proposition 2.10 *Let* H_1 *and* H_2 *be two Hilbert spaces. Assume that* $T \in B(H_1)$, $S \in$ $B(\mathcal{H}_2), \varphi \in B(\mathcal{H}_1, \mathcal{K})$ *and* $\psi \in B(\mathcal{H}_2, \mathcal{K})$ *such that* $T = V^{-1}SV$ *and* $\psi V = \varphi$ *for some* $V \in GL(\mathcal{H}_1, \mathcal{H}_2)$ *. Then* $\{\varphi T^i \in B(\mathcal{H}_1, \mathcal{K})\}_{i=0}^{\infty}$ *is a g-frame if and only if* $\{\psi S^i \in B(\mathcal{H}_2, \mathcal{K})\}_{i=0}^{\infty}$ *is a g-frame. In the affirmative case V is unique.*

Proof For every $f \in \mathcal{H}_1$, we have

$$
\sum_{i=0}^{\infty} \|\varphi T^i f\|^2 = \sum_{i=0}^{\infty} \|\psi V (V^{-1} S V)^i f\|^2 = \sum_{i=0}^{\infty} \|\psi V V^{-1} S^i V f\|^2
$$

$$
= \sum_{i=0}^{\infty} \|\psi S^i V f\|^2.
$$

Since $V \in GL(\mathcal{H}_1, \mathcal{H}_2)$, the sequence $\{\varphi T^i \in B(\mathcal{H}_1, \mathcal{K})\}_{i=0}^{\infty}$ is a *g*-frame if and only if $\Lambda = {\psi S^i \in B(\mathcal{H}_2, \mathcal{K})}_{i=0}^{\infty}$ is a *g*-frame. Moreover, if ${\psi T^i \in B(\mathcal{H}_1, \mathcal{K})}_{i=0}^{\infty}$ is a *g*-frame. Moreover, if ${\psi T^i \in B(\mathcal{H}_1, \mathcal{K})}_{i=0}^{\infty}$ is a *g*-frame and $\{e_j\}_{j\in J}$ is an orthonormal basis for *K*, then by Theorem [1.6,](#page-3-0) each $f \in H_1$ can be represented by $f = \sum_{i=0}^{\infty} \sum_{j \in J} c_{ij} (T^i)^* \varphi^* e_j$ for some $\{c_{ij} : j \in J\}_{i=0}^{\infty} \in \ell^2$. Hence

$$
(V^*)^{-1} f = (V^*)^{-1} \left(\sum_{i=0}^{\infty} \sum_{j \in J} c_{ij} (T^i)^* \varphi^* e_j \right)
$$

=
$$
(V^*)^{-1} \left(\sum_{i=0}^{\infty} \sum_{j \in J} c_{ij} V^* (S^{i-1})^* (V^{-1})^* V^* \psi^* e_j \right)
$$

=
$$
\sum_{i=0}^{\infty} \sum_{j \in J} c_{ij} (S^i)^* \psi^* e_j.
$$

Therefore *V* is unique. \Box

Proposition 2.11 *Let* $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathcal{K})}_{i=1}^{\infty}$ *be a g-frame. If the sequence* ${\{\varphi S^i_{\Lambda}\in B(\mathcal{H}, \mathcal{K})\}_{i=1}^{\infty}}$ $B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$ *is a g-frame for some* $\varphi \in B(\mathcal{H}, \mathcal{K})$ *, then* $A_{\Lambda} < 1$ *.*

Proof The proof is the same as the proof of the $[27,$ Proposition 2.7].

In [\[27](#page-14-12), Corollary 2.4], it has been shown that for Riesz basis $\{T^i f_1\}_{i=0}^{\infty}$ the operator *T* can not be surjective. A result in [\[11,](#page-14-8) Proposition 3.5] and [\[27,](#page-14-12) Proposition 2.2] states that if $\{T^i f\}_{i=0}^{\infty}$ is a frame for an infinite dimensional H with $T \in B(H)$, then *T* can not be compact. The following proposition provides a generalization of this result.

Proposition 2.12 *Let* dim $K < \infty$ *and* dim $H = \infty$ *. If* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *is a g-frame represented by T , then T is not compact.*

Proof Let $\{e_j\}_{j=1}^m$ be an orthonormal basis for *K* and *T* be compact. By Theorem [2.1,](#page-4-2) $\mathcal{R}(T^*) = \overline{\text{span}}\{\Lambda_{i+1}^*e_j : 1 \le j \le m\}_{i=1}^\infty$, and therefore by [\[9](#page-14-4), Lemma 2.5.1], there exists $T^{\dagger} \in B(H)$ such that $T^*T^{\dagger} = Id_{\mathcal{R}(T^*)}$. Since *T* is compact, T^* is compact and so $\mathcal{R}(T^*)$ is finite-dimensional. Consequently, by Theorem [1.6](#page-3-0) we get $\mathcal{H} = \overline{\text{span}}\{\Lambda_i^* e_j : 1 \leq j \leq m\}_{i=1}^{\infty}$. This implies that \mathcal{H} is finite-dimensional which is a contradiction.

The following example shows that the assumption dim $K < \infty$ in Proposition [2.12](#page-8-0) is necessary.

Example 2.13 Let $T: \ell^2 \to \ell^2$ be an operator defined by $T\{a_n\}_{n=1}^\infty = (\alpha a_1, 0, 0, \ldots)$ which $|\alpha| < 1$ is a fixed scalar. It is clear that *T* is compact and $\Lambda = \{T^i \in B(\ell^2)\}_{i=0}^\infty$ is a *g*-frame. In fact, for every $\{a_n\}_{n=1}^{\infty} \in \ell^2$, we have

$$
\sum_{i=0}^{\infty} ||T^i \{a_n\}_{n=1}^{\infty}||^2 = ||\{a_n\}_{n=1}^{\infty}||^2 + \sum_{i=1}^{\infty} ||T^i \{a_n\}_{n=1}^{\infty}||^2
$$

$$
= ||{a_i}_{n=1}^{\infty}||^2 + \sum_{i=1}^{\infty} ||(\alpha^i a_1, 0, 0, \ldots)||^2.
$$

Then $||\{a_n\}_{n=1}^{\infty}||^2 \le \sum_{i=0}^{\infty}||T^i\{a_n\}_{n=1}^{\infty}||^2 \le \frac{1}{1-\alpha^2}||\{a_n\}_{n=1}^{\infty}||^2$.

In the following theorem, by applying a perturbation, we consider a sequence of operators Θ in some sense close to the *g*-Riesz sequence Λ , and then get some conditions for Θ to be *g*-Riesz sequence.

Theorem 2.14 *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *be a g-Riesz sequence and* $\Theta = {\Theta_i \in B(H, K)}_{i=1}^{\infty}$ $B(\mathcal{H}, \mathcal{K})\}_{i=1}^{\infty}$ *be a sequence of operators. Suppose that* S_{Λ} *is the g-frame operator of* Λ (*as a g-frame sequence*) *such that* $\alpha := \sum_{i=1}^{\infty} \|\Lambda_i - \Theta_i\| \|\Lambda_1 S_{\Lambda}^{-1}\| < 1$ *and* $\beta := \sum_{i=1}^{\infty} ||\Lambda_i - \Theta_i||^2 < \infty$. Then Θ is a g-Riesz sequence.

Proof For every $\{g_i\}_{i=1}^{\infty} \in \ell^2(\mathcal{K})$, we have

$$
\left\| \sum_{i=1}^{\infty} \Theta_i^* g_i \right\| = \left\| \sum_{i=1}^{\infty} (\Theta_i^* - \Lambda_i^*) g_i + \sum_{i=1}^{\infty} \Lambda_i^* g_i \right\|
$$

\n
$$
\leq \sum_{i=1}^{\infty} \|\Theta_i^* - \Lambda_i^*\| \|g_i\| + \left\| \sum_{i=1}^{\infty} \Lambda_i^* g_i \right\|
$$

\n
$$
\leq \left(\sum_{i=1}^{\infty} \|\Theta_i - \Lambda_i\|^2 \right)^{\frac{1}{2}} \| \{g_i\}_{i=1}^{\infty} \| + \sqrt{B_{\Lambda}} \| \{g_i\}_{i=1}^{\infty} \|
$$

\n
$$
\leq \left(\sqrt{\beta} + \sqrt{B_{\Lambda}} \right) \| \{g_i\}_{i=1}^{\infty} \|.
$$
\n(2.3)

By the assumption, Λ is a *g*-frame for $\mathcal{M} = \overline{\text{span}}\{\Lambda_i^*(\mathcal{K})\}_{i=1}^{\infty}$. Let $U : \mathcal{H} \to \mathcal{H}$ be defined by

$$
Uf = \sum_{i=1}^{\infty} \Theta_i^* \Lambda_i S_{\Lambda}^{-1} P_{\mathcal{M}} f, \quad f \in \mathcal{H},
$$

where $P_{\mathcal{M}} : \mathcal{H} \to \mathcal{H}$ is the orthogonal projection on *M*. Since $\{\Lambda_i S_{\Lambda}^{-1} P_{\mathcal{M}} f\}_{i=1}^{\infty} \in$ $\ell^2(\mathcal{K})$, by [\(2.3\)](#page-9-0) we have

$$
||Uf|| \leq \left(\sqrt{\beta} + \sqrt{B_{\Lambda}}\right) \left\|\left\{\Lambda_i S_{\Lambda}^{-1} P_M f\right\}_{i=1}^{\infty}\right\| \leq \frac{\sqrt{\beta} + \sqrt{B_{\Lambda}}}{\sqrt{A_{\Lambda}}} ||f||, \quad f \in \mathcal{H}.
$$

Note that the operator *U* on *M* is equal to $S_{\Theta\Lambda} S_{\Lambda}^{-1}$. Let $f \in \mathcal{M}$, then

$$
||f - Uf|| = \left\| \sum_{i=1}^{\infty} \Lambda_i^* \Lambda_i S_{\Lambda}^{-1} f - \sum_{i=1}^{\infty} \Theta_i^* \Lambda_i S_{\Lambda}^{-1} f \right\|
$$

$$
= \left\| \sum_{i=1}^{\infty} (\Lambda_i^* - \Theta_i^*) \Lambda_i S_{\Lambda}^{-1} f \right\|
$$

$$
\leq \sum_{i=1}^{\infty} \|\Lambda_i - \Theta_i\| \|\Lambda_i S_{\Lambda}^{-1}\| \|f\| = \alpha \|f\|.
$$

This implies that $||Uf|| \ge (1 - \alpha) ||f||$ for all $f \in M$. On the other hand by applying [\(1.2\)](#page-3-2), we get $U \Lambda_k^* = \Theta_k^*$ for each $k \in \mathbb{N}$, because

$$
\langle U\Lambda_k^*g, f\rangle = \sum_{i=1}^{\infty} \langle \Theta_i^*\Lambda_i S_{\Lambda}^{-1} \Lambda_k^*g, f\rangle = \sum_{i=1}^{\infty} \langle \Lambda_k^*g, S_{\Lambda}^{-1} \Lambda_i^* \Theta_i f\rangle
$$

= $\langle g, \Theta_k f \rangle = \langle \Theta_k^*g, f \rangle$, $f \in \mathcal{H}, g \in \mathcal{K}$.

Consequently, for each ${g_i}_{i=1}^{\infty} \in l^2(\mathcal{K})$ we have

$$
\left\| \sum_{i=1}^{\infty} \Theta_i^* g_i \right\| = \left\| \sum_{i=1}^{\infty} U \Lambda_i^* g_i \right\| = \left\| U \sum_{i=1}^{\infty} \Lambda_i^* g_i \right\|
$$

\n
$$
\geq (1 - \alpha) \left\| \sum_{i=1}^{\infty} \Lambda_i^* g_i \right\| \geq (1 - \alpha) \sqrt{A_{\Lambda}} \left(\sum_{i=1}^{\infty} \|g_i\|^2 \right)^{1/2}.
$$

Theorem 2.15 *Let* $T \in B(H)$ *and* $\varphi, \psi \in B(H, K)$ *. Suppose that* $\Lambda = {\varphi T^i \in B(H, K)}$ $B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$ *be a g-Riesz sequence and there exists* $\mu \in [0, 1)$ *such that* $\|\psi\|$ < $(1-\mu)\sqrt{A_{\Lambda}}$ and $\|\psi T^{i}\| \leq \mu^{i} \|\psi\|$ for each $i \in \mathbb{N}$. Then $\{(\varphi + \psi)T^{i} \in B(\mathcal{H},\mathcal{K})\}_{i=0}^{\infty}$ *is a g-Riesz sequence.*

Proof It is sufficient to show that the sequence $\{(\varphi + \psi)T^i \in B(\mathcal{H}, \mathcal{K})\}_{i=0}^{\infty}$ satisfies the conditions of Theorem [2.3.](#page-9-0) Let S_A be the *g*-frame operator of Λ (as a *g*-frame sequence). It is clear that $\|\varphi S_{\Lambda}^{-1}\| \leq \frac{1}{\sqrt{A_{\Lambda}}}$. By the assumptions, we get

$$
\sum_{i=0}^{\infty} \|(\varphi + \psi)T^{i} - \varphi T^{i}\|^{2} = \sum_{i=0}^{\infty} \|\psi T^{i}\|^{2} \le \sum_{i=0}^{\infty} \mu^{2i} \|\psi\|^{2} = \frac{\|\psi\|^{2}}{1 - \mu^{2}},
$$

$$
\sum_{i=0}^{\infty} \|\psi T^{i}\| \|\varphi S_{\Lambda}^{-1}\| \le \frac{\|\psi\|}{(1 - \mu)\sqrt{A_{\Lambda}}} < 1.
$$

Therefore the proof is completed.

 \Box

3 *G***-Frame representation with a bounded operator and a sequence of non-zero scalars**

Frames of the form $\{a_i T^i f\}_{i=0}^{\infty}$ for some non-zero scalars with $\sup_{i \in \mathbb{N}} \left| \frac{a_i}{a_{i+1}} \right|$ $\vert \cdot \infty$ and $T \in B(H)$, were introduced and investigated in [\[12](#page-14-11)[,27](#page-14-12)]. In this section, we introduce this kind of representation for *g*-frames.

Definition 3.1 We say that a *g*-frame $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ has a weighted representation if there are a sequence of non-zero scalars $\{a_i\}_{i=1}^{\infty}$ and $T \in B(\mathcal{H})$ such that $\Lambda_i = a_i \Lambda_1 T^{i-1}$ for all $i \in \mathbb{N}$. In the affirmative case, we say that Λ is represented by $(T, \{a_i\}_{i=1}^{\infty})$.

Note that for $\{a_i\}_{i=1}^{\infty} = \{1\}_{i=1}^{\infty}$ in Definition [3.1,](#page-11-1) we have [\[22,](#page-14-24) Definition 2.2]. Also, It is obvious that if a *g*-frame $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ is represented by $(T, {a_i}_{i=1}^{\infty})$, then $a_1 = 1$, and

$$
\Lambda_{i+1} = a_{i+1}\Lambda_1 T^i = \frac{a_{i+1}}{a_i} a_i \Lambda_1 T^{i-1} T = \frac{a_{i+1}}{a_i} \Lambda_i T, \quad i \in \mathbb{N}.
$$

In [\[22\]](#page-14-24), it is shown that the *g*-frame $\Lambda = {\Lambda_n \in B(\mathbb{C})}_{n=1}^{\infty}$ with $\Lambda_n = \frac{1}{n^4 + 1} Id_{\mathbb{C}}$ has not any representation, but this *g*-frame is represented by $(Id_{\mathbb{C}}, \{a_n\}_{n=1}^{\infty}$, where $a_n = \frac{2}{n^4 + 1}$ for all $n \in \mathbb{N}$.

Theorem 3.2 *Let* $\Lambda = {\Lambda_i \in B(H, K)}_{i=1}^{\infty}$ *be a g-frame such that if* $\sum_{i=1}^{n} \Lambda_i^* g_i = 0$ *for some* $n \in \mathbb{N}$, then $g_i = 0$ *for every* $1 \leq i \leq n$. Let $\{a_i\}_{i=1}^{\infty}$ be a sequence of non-zero *scalars with* $\mu := \sup_{i \in \mathbb{N}} \left| \frac{a_i}{a_{i+1}} \right|$ $| < \infty$, and ker T_{Λ} be invariant under the weighted *right-shift operator* \mathcal{T}_{ω} *, where* $\omega = {\overline{a_i}}_{i=1}^{\infty}$ *. Then* Λ *is represented by* $(T, {a_i}_{i=1}^{\infty})$ $where \Vert T \Vert \leq \mu \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}.$

Proof Let $\{e_j\}_{j \in J}$ be an orthonormal basis for *K*. We define the linear map *S* : $span{\{\Lambda_i^*(\mathcal{K})\}}_{i=1}^{\infty} \rightarrow span{\{\Lambda_i^*(\mathcal{K})\}}_{i=1}^{\infty}$ with

$$
S(\Lambda_i^* e_j) = \frac{\overline{a_i}}{\overline{a_{i+1}}} \Lambda_{i+1}^* e_j.
$$

By the assumption, *S* is well-defined. Now, we show that *S* is bounded. Let $f =$ $\sum_{i \in I, j \in G} c_{ij} \Lambda_i^* e_j \in \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i=1}^\infty$ where $I \subseteq \mathbb{N}$ and $G \subseteq J$ are non-empty finite sets. We may assume that $\{c_{ij} : j \in J\}_{i=1}^{\infty} \in \ell^2(\mathbb{N} \times J)$ by letting $c_{ij} = 0$ if $(i, j) \notin I \times G$. By Theorem [1.6,](#page-3-0) $F = \{\Lambda_i^* e_j : j \in J\}_{i=1}^{\infty}$ is a frame for *H* with lower and upper frame bounds A_{Λ} and B_{Λ} , respectively. We can write

$$
\{c_{ij} : j \in J\}_{i=1}^{\infty} = \{d_{ij} : j \in J\}_{i=1}^{\infty} + \{r_{ij} : j \in J\}_{i=1}^{\infty}
$$

where $\{d_{ij} : j \in J\}_{i=1}^{\infty} \in \text{ker } T_F$ and $\{r_{ij} : j \in J\}_{i=1}^{\infty} \in (\text{ker } T_F)^{\perp}$. Then $\left\{\sum_{j\in J} d_{ij} e_j\right\}_{i=1}^{\infty}$ belongs to ker T_{Λ} , and by the assumption we conclude that

$$
\sum_{i=1}^{\infty} \sum_{j \in J} \frac{\overline{a_i}}{\overline{a_{i+1}}} d_{ij} \Lambda_{i+1}^* e_j = T_{\Lambda} \mathcal{T}_{\omega} \left(\left\{ \sum_{j \in J} d_{ij} e_j \right\}_{i=1}^{\infty} \right) = 0.
$$

Therefore

$$
||Sf||^2 = \left\| \sum_{i=1}^{\infty} \sum_{j \in J} \frac{\overline{a_i}}{\overline{a_{i+1}}} c_{ij} \Lambda_{i+1}^* e_j \right\|^2 = \left\| \sum_{i=1}^{\infty} \sum_{j \in J} \frac{\overline{a_i}}{\overline{a_{i+1}}} r_{ij} \Lambda_{i+1}^* e_j \right\|^2
$$

$$
\leq \mu^2 B_\Lambda \sum_{i=1}^{\infty} \sum_{j \in J} |r_{ij}|^2.
$$
 (3.1)

Since $\{r_{ij} : j \in J\}_{i=1}^{\infty} \in (\ker T_F)^{\perp}$, by [\[9](#page-14-4), Lemma 5.5.5], we have

$$
A_{\Lambda} \sum_{i=1}^{\infty} \sum_{j \in J} |r_{ij}|^2 \le \left\| \sum_{i=1}^{\infty} \sum_{j \in J} r_{ij} \Lambda_i^* e_j \right\|^2.
$$
 (3.2)

Hence by the inequalities (3.1) and (3.2) , we have

$$
||Sf||^{2} \leq \mu^{2} B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i=1}^{\infty} \sum_{j \in J} r_{ij} \Lambda_{i}^{*} e_{j} \right\|^{2}
$$

= $\mu^{2} B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i=1}^{\infty} \sum_{j \in J} (d_{ij} + r_{ij}) \Lambda_{i}^{*} e_{j} \right\|^{2}$
= $\mu^{2} B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i=1}^{\infty} \sum_{j \in J} c_{ij} \Lambda_{i}^{*} e_{j} \right\|^{2} = \mu^{2} B_{\Lambda} A_{\Lambda}^{-1} ||f||^{2}.$

So, *S* is bounded and can be extended to $Q \in B(H)$. Let $T = Q^*$, then it is obvious that Λ is represented by $(T, \{a_i\}_{i=1}^{\infty})$ and $||T|| \le \mu \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}$.

Theorem 3.3 *Let* Λ = { Λ _{*i*} ∈ *B*(\mathcal{H} , K)} $_{i=1}^{\infty}$ *and* Θ = { Θ *i* ∈ *B*(\mathcal{H} , K)} $_{i=1}^{\infty}$ *be sequences such that*

$$
f = \sum_{i=1}^{\infty} \Lambda_i^* \Theta_i f, \quad f \in \mathcal{H}.
$$
 (3.3)

Assume that $\{a_i\}_{i=1}^{\infty}$ is a sequence of non-zero scalars such that for every $f \in \mathcal{H}$ *the series* $\sum_{i=1}^{\infty}$ *ai a*_{*i*+1} $\Theta_i f$ converges. Then $\Lambda = \{a_i \Lambda_1 T^{i-1} \in B(H, K)\}_{i=1}^{\infty}$ for *i*₅ and only *i*⁶ *some* $T \in B(\mathcal{H})$ *if and only if*

$$
\Lambda_{j+1} = \frac{a_{j+1}}{a_j} \sum_{i=1}^{\infty} \frac{a_i}{a_{i+1}} \Lambda_j \Theta_i^* \Lambda_{i+1}, \quad j \in \mathbb{N}.
$$
 (3.4)

Proof First, we assume that $\Lambda = \{a_i \Lambda_1 T^{i-1} \in B(\mathcal{H}, \mathcal{K})\}_{i=1}^{\infty}$ for some $T \in B(\mathcal{H})$. Then $\Lambda_{i+1} = \frac{a_{i+1}}{a_i} \Lambda_i T$ for all $i \in \mathbb{N}$. By [\(3.3\)](#page-12-2), we get

$$
T^*f = \sum_{i=1}^{\infty} T^*\Lambda_i^* \Theta_i f = \sum_{i=1}^{\infty} (\Lambda_i T)^* \Theta_i f = \sum_{i=1}^{\infty} \frac{\overline{a_i}}{\overline{a_{i+1}}} \Lambda_{i+1}^* \Theta_i f, \quad f \in \mathcal{H}.
$$

Then

$$
\Lambda_{j+1}^* g = \frac{\overline{a_{j+1}}}{\overline{a_j}} T^* \Lambda_j^* g = \frac{\overline{a_{j+1}}}{\overline{a_j}} \sum_{i=1}^\infty \frac{\overline{a_i}}{\overline{a_{i+1}}} \Lambda_{i+1}^* \Theta_i \Lambda_j^* g, \quad g \in \mathcal{K}.
$$

Therefore [\(3.4\)](#page-13-4) is concluded. For the other implication, let [\(3.4\)](#page-13-4) hold. We define the linear operator $T : \mathcal{H} \to \mathcal{H}$ by

$$
Tf = \sum_{i=1}^{\infty} \frac{a_i}{a_{i+1}} \Theta_i^* \Lambda_{i+1} f, \quad f \in \mathcal{H}.
$$

By the assumption and uniform boundedness principle, *T* is well-defined and bounded. Then by [\(3.4\)](#page-13-4), for every $f \in H$, we have

$$
\Lambda_j Tf = \sum_{i=1}^{\infty} \frac{a_i}{a_{i+1}} \Lambda_j \Theta_i^* \Lambda_{i+1} f = \frac{a_j}{a_{j+1}} \Lambda_{j+1} f, \quad j \in \mathbb{N}.
$$

This completes the proof.

References

- 1. Aldroubi, A., Cabrelli, C., Molter, U., Tang, S.: Dynamical sampling. Appl. Comput. Harmon. Anal. **42**(3), 378–401 (2017)
- 2. Aldroubi, A., Petrosyan, A.: Dynamical sampling and systems from iterative actions of operators. In: Mhaskar, H., Pesenson, I., Zhou, D.X., Le Gia, Q.T., Mayeli, A. (eds.) Frames and Other Bases in Abstract and Function Spaces. Birkhäuser, Boston (2017)
- 3. Antezana, J., Corach, G., Ruiz, M., Stojanoff, D.: Oblique projections and frames. Proc. Am. Math. Soc. **134**(4), 1031–1037 (2006)
- 4. Antoine, J.P.: The continuous wavelet transform in image processing. CWI Q. **11**(4), 323–345 (1998)
- 5. Balazs, P., Dörfler, M., Jaillet, F., Holighaus, N., Velasco, G.: Theory, implementation and applications of nonstationary Gabor frames. J. Comput. Appl. Math. **236**(6), 1481–1496 (2011)
- 6. Bibak Hafshejani, A., Dehghan, M.A.: *P*-woven dual frames. J. Pseudo-Differ. Oper. Appl. **11**(4), 1635–1646 (2020)
- 7. Casazza, P.G., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. **25**(1), 114–132 (2008)
- 8. Casazza, P.G., Kutyniok, G.: Frames of subspaces. Contemp. Math. **345**, 87–114 (2004)
- 9. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis, Birkhäuser, Boston (2016)
- 10. Christensen, O., Hasannasab, M.: Operator representations of frames: boundedness, duality, and stability. Integral Equ. Oper. Theory **88**(4), 483–499 (2017)
- 11. Christensen, O., Hasannasab, M., Rashidi, E.: Dynamical sampling and frame representations with bounded operators. J. Math. Anal. Appl. **463**(2), 634–644 (2018)
- 12. Christensen, O., Hasannasab, M.: Frames, operator representations, and open problems. In: Böttcher, A., Potts, D., Stollmann, P., Wenzel, D. (eds.) The Diversity and Beauty of Applied Operator. Theory Operator Theory: Advances and Applications, vol. 268. Birkhäuser, Cham (2018)
- 13. Christensen, O., Hasannasab, M.: Frames properties of systems arising via iterative actions of operators. Appl. Comput. Harmon. Anal. **46**(12), 664–673 (2019)
- 14. Christensen, O., Datta, S., Kim, R.Y.: Equiangular frames and generalizations of the Welch bound to dual pairs of frames. Linear Multilinear Algebra **68**(12), 2495–2505 (2020)
- 15. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. **72**(2), 341–366 (1952)
- 16. Duval-Destin, M., Muschietti, M.A., Torrésani, B.: Continuous wavelet decompositions, multiresolution, and contrast analysis. SIAM J. Math. Anal. **24**(3), 739–755 (1993)
- 17. Ghobadzadeh, F., Najati, A., Osgooei, E.: Modular frames and invertibility of multipliers in Hilbert C*-modules. Linear Multilinear Algebra **68**(8), 1568–1584 (2020)
- 18. Guo, X.: Perturbations of invertible operators and stability of *g*-frames in Hilbert spaces. Results Math. **64**(3–4), 405–421 (2013)
- 19. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Am. Math. Soc. **147**(697), 1–93 (2000)
- 20. Jakobsen, M.S., Lemvig, J.: Reproducing formulas for generalized translation invariant systems on locally compact abelian groups. Trans. Am. Math. Soc. **368**(12), 8447–8480 (2016)
- 21. Khedmati, Y., Jakobsen, M.S.: Approximately dual and perturbation results for generalized translation invariant frames on LCA groups. Int. J. Wavelets Multiresolut. Inf. Process. **16**(1), 1850017 (2018)
- 22. Khedmati, Y., Ghobadzadeh, F.: *G*-frame representations with bounded operators. Int. J. Wavelets Multiresolut. Inf. Process **19**, 2050078 (2020)
- 23. Khosravi, A., Musazadeh, K.: Fusion frames and *g*-frames. J. Math. Anal. Appl. **342**(2), 1068–1083 (2008)
- 24. Li, D., Leng, J., Huang, T., Sun, G.: On sum and stability of g-frames in Hilbert spaces. Linear Multilinear Algebra **66**(8), 1578–1592 (2018)
- 25. Najati, A., Rahimi, A.: Generalized frames in Hilbert spaces. Bull. Iran. Math. Soc. **35**, 97–109 (2009)
- 26. Najati, A., Faroughi, M.H., Rahimi, A.: *G*-frames and stability of *g*-frames in Hilbert spaces. Methods Funct. Anal. Topol. **14**(03), 271–286 (2008)
- 27. Rashidi, E., Najati, A., Osgooei, E.: Dynamical Sampling: Mixed Frame Operators, Representations and Perturbations. Math. Rep. (Bucur.), to appear
- 28. Sun, W.: *G*-frames and *g*-Riesz bases. J. Math. Anal. Appl. **322**(1), 437–452 (2006)
- 29. Sun, W.: Stability of *g*-frames. J. Math. Anal. Appl. **326**(2), 858–868 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.