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Abstract
The purpose of the paper is to analyze g-frames of the form {ϕT i ∈ B(H,K)}∞i=0,
where T ∈ B(H) and ϕ ∈ B(H,K), and discuss the properties of the operator
T . We consider stability of g-Riesz sequences of the form {ϕT i ∈ B(H,K)}∞i=0.
Finally, a weighted representation of a g frame is introduced and some of its properties
are presented. We provide a sufficient condition for a given g-frame � = {�i ∈
B(H,K)}∞i=1 to be represented by an operator T ∈ B(H) and a sequence {ai }∞i=1.

Keywords Representation of a frame · g-Frame · Stability
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1 Introduction

Duffin and Schaeffer introduced frames in separable Hilbert spaces as an extension
of orthonormal bases [15]. A frame does not necessarily contain linear indepen-
dent vectors. Frames can be viewed as redundant bases which are generalization of
orthonormal bases. They provide non-unique representations of vectors in a Hilbert
space. The redundancy and flexibility of frames have led to their applications in various
fields throughout mathematics and engineering, such as signal and image processing
[4,5,16], data compression, dynamical sampling [1,2] and etc.
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Definition 1.1 A sequence F = { fi }∞i=1 in a separable Hilbert space H is called a
frame forH, if there exist two constants AF , BF > 0 such that

AF‖ f ‖2 ≤
∞∑

i=1

|〈 f , fi 〉|2 ≤ BF‖ f ‖2, f ∈ H.

For background material on frame theory and related topics, we refer readers to [6,9,
14,17,19].

As introduced in[1,2] by Aldroubi et al. dynamic sampling deals with the frame
properties of sequences {T i f }∞i=0, where T : H → H belongs to certain classes of
linear operators and f ∈ H.

Frames { fi }∞i=1 for which a representation of the form {T i f }∞i=0 with a bounded
operator T , were characterized in [11]. While all linearly independent frames have
a representation {T i f }∞i=0, it is more restrictive to obtain boundedness of the repre-
senting operator T . Christensen et al. [10,13] have shown that the only frames with
bounded representations are those that are linearly independent and the kernel of their
synthesis operators is invariant under right-shift operator T : �2 → �2 defined by

T
({ci }∞i=1

) = (0, c1, c2, . . .).

For example, any Riesz sequence { fn}∞n=1 in H has the form {T n fn}∞n=0 for some
operator T ∈ B(H) with closed range.

To study frames of the form {ai T i f1}∞i=0, they consider the weighted right-shift

operator on �2(H) :=
{
{ci }∞i=1 ⊆ H : ∑∞

i=1 ‖ci‖2 < ∞
}
defined by

Tω

({ci }∞i=1

) =
(
0,

a1
a2

c1,
a2
a3

c2, . . .
)
,

for a sequence of non-zero scalars ω = {ai }∞i=1 [12]. They have also explored the
relationship between the representations of a frame and its duals. For the applications
of frames, they established that frame representations were preserved under some
perturbations. Results [2, Theorem 7] and [11, Proposition 3.5] are shown that the
sequence {T i f1}∞i=0 is not a frame, whenever T is unitary or compact. Also, Lemma
2.1 and Proposition 2.3 of [27] indicate the range of T is close and give some equivalent
conditions for T to be surjective.

Sun [28] introduced a generalization of frames, named g-frameswhich are including
some extensions and types of frames such as frames of subspaces [8], fusion frames [7],
oblique frames [3], a class of time-frequency localization operators and generalized
translation invariant (GTI) [20,21]. Therefore, some concepts presented in frames such
as duality, stability and Riesz basis were also studied in g-frames [24,28,29].

Throughout this paper, J is countable set, N is natural numbers and C is complex
numbers, H and K are separable Hilbert spaces, I dH denotes the identity operator
on H, B(H) and GL(H) denote the set of bounded linear operators and invertible
bounded linear operators on H, respectively. Also, we apply B(H,K) for the set of
bounded linear operators from H to K and consider ϕ,ψ ∈ B(H,K). We use ker T
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and R(T ) for the null space and range T ∈ B(H), respectively. Now, we summarize
some facts about g-frames from [25,28]. For more on related subjects to g-frames, we
refer to [18,23,26].

Definition 1.2 Wesay that� = {�i ∈ B(H,Ki )}∞i=1 is a generalized frame forHwith
respect to {Ki }∞i=1, or simply g-frame, if there are two constants 0 < A� ≤ B� < ∞
such that

A�‖ f ‖2 ≤
∞∑

i=1

‖�i f ‖2 ≤ B�‖ f ‖2, f ∈ H. (1.1)

We call A�, B� the lower and upper g-frame bounds, respectively. � is called a tight
g-frame if A� = B�, and a Parseval g-frame if A� = B� = 1. A family � is called
g-Bessel if the right hand inequality in (1.1) holds for all f ∈ H, in this case, B� is
called the g-Bessel bound.

Example 1.3 [28] Let { fi }∞i=1 be a frame forH. Suppose that� = {�i ∈ B(H,C)}∞i=1,
where

�i f = 〈 f , fi 〉, f ∈ H.

It is easy to see that � is a g-frame.

For a g-frame�, there exists a unique positive and invertible operator S� : H → H
such that

S� f =
∞∑

i=1

�∗
i �i f , f ∈ H,

and A� · I dH ≤ S� ≤ B� · I dH. The operator S� is called the g-frame operator for
�. For a family {Ki }∞i=1 of Hilbert spaces, consider the space

⊕∞
i=1Ki =

{
{gi }∞i=1 : gi ∈ Ki ,

∞∑

i=1

‖gi‖2 < ∞
}
.

For the caseKi = K for all i , we use �2(K) instead of ⊕∞
i=1Ki . It is clear that ⊕∞

i=1Ki

is a Hilbert space with pointwise operations and with the inner product given by

〈{ fi }∞i=1, {gi }∞i=1

〉 =
∞∑

i=1

〈 fi , gi 〉.

For a g-Bessel �, the synthesis operator T� : ⊕∞
i=1Ki → H is defined by

T�

({gi }∞i=1

) =
∞∑

i=1

�∗
i gi .
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The analysis operator T ∗
� : H → ⊕∞

i=1Ki , adjoint of T�, is given by

T ∗
� f = {�i f }∞i=1, f ∈ H.

It is obvious that S� = T�T ∗
�. For a g-frame � = {�i ∈ B(H,Ki )}∞i=1, the sequence

�̃ = {�̃ := �i S
−1
� ∈ B(H,Ki )}∞i=1, which is called canonical dual of �, is a g-

frame with lower and upper g-frame bounds 1
B�

and 1
A�

, respectively. For g-Bessel
sequences � and �, we consider S�� := T�T ∗

�.

Definition 1.4 Consider a sequence � = {�i ∈ B(H,Ki )}∞i=1.

(i) We say that � is g-complete if ∩∞
i=1 ker�i = {0}.

(ii) We say that � is a g-Riesz sequence if there are two constants 0 < A� ≤ B� <

∞ such that for any finite sequence {gi }ni=1,

A�

n∑

i=1

‖gi‖2 ≤
∥∥∥∥∥

n∑

i=1

�∗
i gi

∥∥∥∥∥

2

≤ B�

n∑

i=1

‖gi‖2, gi ∈ Ki .

(iii) We say that � is a g-Riesz basis if � is g-complete and g-Riesz sequence.
(iv) We say that � is a g-orthonormal basis if it satisfies the following:

〈�∗
i gi ,�

∗
j g j 〉 = δi, j 〈gi , g j 〉, i, j ∈ N, gi ∈ Ki , g j ∈ K j ,

∞∑

i=1

‖�i f ‖2 = ‖ f ‖2, f ∈ H.

A g-Riesz basis � = {�i ∈ B(H,Ki )}∞i=1 is g-biorthonormal with respect to its
canonical dual �̃ = {�̃i ∈ B(H,Ki )}∞i=1 in the following sense

〈�∗
i gi , �̃ j

∗
g j 〉 = δi, j 〈gi , g j 〉, i, j ∈ N, gi ∈ Ki , g j ∈ K j . (1.2)

Theorem 1.5 [26] Let � = {�i ∈ B(H,Ki )}∞i=1 be a g-frame and � = {�i ∈
B(H,Ki )}∞i=1 be a g-orthonormal basis. Then there is an onto bounded operator
V : H → H such that �i = �i V ∗, for all i ∈ N. If � is a g-Riesz basis, then V is
invertible. If � is a g-orthonormal basis, then V is unitary.

Theorem 1.6 [28] Let for i ∈ N, {ei, j } j∈Ji be an orthonormal basis for Ki . The
sequence � = {�i ∈ B(H,Ki )}∞i=1 is a g-frame (respectively, g-Bessel family,
g-Riesz basis, g-orthonormal basis) if and only if {�∗

i ei, j }i∈N, j∈Ji is a frame (respec-
tively, Bessel sequence, Riesz basis, orthonormal basis).

Now we summarize some results of article [22] in which we generalize the results
of articles [10,11] to introduce the representation of g-frames with bounded operators.

Definition 1.7 Let T ∈ B(H). We say that a g-frame � = {�i ∈ B(H,K)}∞i=1 has a
representation T if �i = �1T i−1 for all i ∈ N. In the affirmative case, we say that �
is represented by T .
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Remark 1.8 Let T ∈ B(H). Consider the frame F = { fi }∞i=1 = {T i f1}∞i=0 forH, and
the g-frame � = {�i ∈ B(H,C)}∞i=1, where �i f = 〈 f , fi 〉 for each i ∈ N. It is
clear that

�i+1 f = 〈 f , fi+1〉 = 〈 f , T fi 〉 = 〈T ∗ f , fi 〉 = �i T
∗ f , f ∈ H.

Therefore, �i = �1(T ∗)i−1 for all i ∈ N, i.e., � is represented by T ∗. Conversely, if
T ∈ B(H) and � = {�i ∈ B(H,C)}∞i=1 = {�1T i }∞i=0 is a g-frame for H, then by
Riesz Representation Theorem there exists a sequence { fi }∞i=1 (which is a frame for
H) such that

fi = (T ∗)i−1 f1, �i f = 〈 f , fi 〉, f ∈ H, i ∈ N.

The following theorem provides a sufficient condition for a given g-frame to be rep-
resented by an operator T . This theorem is a special case of Theorem 3.2.

Theorem 1.9 [22] Let � = {�i ∈ B(H,K)}∞i=1 be a g-frame such that if∑n
i=1 �∗

i gi = 0 for some n ∈ N, then gi = 0 for every 1 ≤ i ≤ n. Suppose that
ker T� is invariant under the right-shift operator. Then� is represented by T ∈ B(H),

where ‖T ‖ ≤
√
B�A−1

� .

Corollary 1.10 [22]Every g-orthonormal basis and g-Riesz basis has a representation.

Remark 1.11 [22] Consider a g-frame � = {�i ∈ B(H,K)}∞i=1 which is represented
by T . For S ∈ GL(H), the family �S = {�i S ∈ B(H,K)}∞i=1 is a g-frame [26,
Corollary 2.26], which is represented by S−1T S.

In this paper, we generalize some recent results of [11,27] to obtain some properties
of the operator T ∈ B(H) in a g-frame {ϕT i ∈ B(H,K)}∞i=0. We also generalize
some results of [12,27] by introducing and investigating weighted representations for
g-frames.

2 G-Frame representation properties

In this section, some properties of T ∈ B(H) are provided when {ϕT i ∈ B(H,K)}∞i=0
is a g-frame.

Theorem 2.1 Let � = {�i ∈ B(H,K)}∞i=1 be a g-frame represented by T . Then
R(T ∗) = span{T ∗�∗

i e j : j ∈ J }∞i=1, where {e j } j∈J is an orthonormal basis for K .
In particular, R(T ∗) and R(T ) are closed.

Proof By Theorem 1.6, {�∗
i e j : j ∈ J }∞i=1 is a frame forH, and so for every f ∈ H,

we have

T ∗ f = T ∗
⎛

⎝
∞∑

i=1

∑

j∈J

ci j�
∗
i e j

⎞

⎠ =
∞∑

i=1

∑

j∈J

ci j T
∗�∗

i e j .
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Thus, R(T ∗) ⊆ span{T ∗�∗
i e j : j ∈ J }∞i=1 := H0. On the other hand, since

{T ∗�∗
i e j : j ∈ J }∞i=1 = {�∗

i+1e j : j ∈ J }∞i=1 is a frame forH0, we have

g =
∞∑

i=1

∑

j∈J

di j T
∗�∗

i e j = T ∗
⎛

⎝
∞∑

i=1

∑

j∈J

di j�
∗
i e j

⎞

⎠ , g ∈ H0.

Then R(T ∗) = H0 is closed and soR(T ) is closed. 
�
Proposition 2.2 Let � = {ϕT i ∈ B(H,K)}∞i=0 be a g-frame such that ‖ϕ‖ <

√
A�.

Then T is injective.

Proof We have

A�‖ f ‖2 ≤
∞∑

i=0

‖ϕT i f ‖2 ≤ ‖ϕ‖2
(

‖ f ‖2 +
∞∑

i=1

‖T i f ‖2
)

, f ∈ H.

Thus ‖ϕ‖2∑∞
i=1 ‖T i f ‖2 ≥ (A� − ‖ϕ‖2)‖ f ‖2 and since ‖ϕ‖ <

√
A�, we infer that

T is injective. 
�
The following example shows that, the other implication of Proposition 2.2 is not

satisfied. Also, we give an example which is satisfied in Proposition 2.2 condition.

Example 2.3 (i) For ϕ = 3I dH and T = 1
2 I dH, we get the tight g-frame � =

{ϕT i ∈ B(H)}∞i=0 with ‖ϕ‖ >
√
A�.

(ii) For ϕ = I dH and T = 1
2 I dH, we get the tight g-frame � = {ϕT i ∈ B(H)}∞i=0

with ‖ϕ‖ <
√
A�.

Theorem 2.4 Let � = {�i ∈ B(H,K)}∞i=1 be a g-frame represented by T . Then the
following are equivalent:

(i) T is injective.
(ii) R(S−1

� �∗
1) ∩ ker T = {0}.

(iii) R(�∗
1) ⊆ R(T ∗).

Proof (i) ⇒ (ii) and (i) ⇒ (iii) are clear. (ii) ⇒ (i) Suppose that T is not injective.
Then there exists 0 �= f ∈ ker T , and we get

f =
∞∑

i=1

S−1
� �∗

i �i f = S−1
� �∗

1�1 f +
∞∑

i=1

S−1
� �∗

i+1�i T f = S−1
� �∗

1�1 f .

So f ∈ R(S−1
� �∗

1), which is a contradiction. (iii) ⇒ (i) For any f ∈ H, we have

f =
∞∑

i=1

�∗
i �i S

−1
� f = �∗

1�1S
−1
� f +

∞∑

i=1

T ∗�∗
i �i+1S

−1
� f
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= �∗
1�1S

−1
� f + T ∗

( ∞∑

i=1

�∗
i �i+1S

−1
� f

)
.

Since R(�∗
1) ⊆ R(T ∗), we get f ∈ R(T ∗). Therefore T ∗ is surjective, and so T is

injective. 
�
The following example shows that the operator representation of a g-frame may not
be injective.

Example 2.5 (i) Let T ∈ B(H) and f ∈ H such that F = {T i f }∞i=0 be a Riesz
basis for H. Then by [27, Corollary 2.4], T is not surjective. If we consider
� = {�i ∈ B(H,C)}∞i=1, where �i f = 〈 f , T i f 〉, then by Remark 1.8, � is
represented by T ∗ which is not injective. On the other hand, since �∗

i (1) = T i f
for any i ∈ N, by Theorem 1.6, � is a g-Riesz basis.

(ii) Let H0 be a separable real Hilbert space and {ei }∞i=1 be an orthonormal basis.
Suppose � = {�i ∈ B(H0,R)}∞i=1 such that �i f := 〈 f , ei 〉 for all f ∈ H0. It
is easy to see that � is a g-orthonormal basis. We have

(a)
∑∞

i=1 ‖�i f ‖2 =∑∞
i=1 |〈ei , f 〉|2 = ‖ f ‖2, f ∈ H0;

(b) �∗
i α = αei for all α ∈ R and

∥∥∥∥∥

n∑

i=1

�∗
i αi

∥∥∥∥∥

2

=
n∑

i=1

|αi |2, {αi }ni=1 ⊆ R;

(c) 〈�∗
i α,�∗

jβ〉 = δi, jαβ, α, β ∈ R.

If we define V : H0 �→ H0 by V f := ∑∞
i=1〈 f , ei+1〉ei , then V is not injective

and �i+1 = �i V . Then � is represented by V .

Theorem 1.9 shows that for a g-frame � = {ϕT i ∈ B(H,K)}∞i=0 we have

‖T ‖ ≤
√
B�A−1

� . The following theorem gives a sufficient condition to get ‖T ‖ ≥ 1.

However, there is a g-frame {ϕT i ∈ B(H)}∞i=0 with ‖T ‖ < 1 (see Example 2.3).

Theorem 2.6 Let T ∈ B(H) and ϕ ∈ B(H,K) such that � = {ϕT i ∈ B(H,K)}∞i=0
be a g-frame. If

⋂n
i=0 ker ϕT

i �= {0} for each n ∈ N, then ‖T ‖ ≥ 1.

Proof Let ε > 0, and suppose by contradiction that‖T ‖ < 1. Then there exists N > 0
such that

∑∞
i=N+1 ‖ϕT i‖2 < ε. Let 0 �= f ∈⋂N

i=0 ker ϕT
i with ‖ f ‖ = 1. Then

A� ≤
N∑

i=0

‖ϕT i f ‖2 +
∞∑

i=N+1

‖ϕT i f ‖2 < ε.

Therefore A� = 0, which is a contradiction. 
�
The main purpose of the reminder of this section is to show that the operator repre-
sentation of g-frames may be compact but can not be unitary.



    8 Page 8 of 15 A. Najati et.al

Theorem 2.7 Let� = {ϕT i ∈ B(H,K)}∞i=0 be a g-frame. Then T
n f → 0 as n → ∞

for every f ∈ H.

Proof For every n ∈ N and f ∈ H, we have

A�‖T n f ‖2 ≤
∞∑

i=1

‖ϕT i−1+n f ‖2 =
∞∑

i=n

‖ϕT i f ‖2. (2.1)

Since
∑∞

i=0 ‖ϕT i f ‖2 is convergent, we get∑∞
i=n ‖ϕT i f ‖2 → 0 as n → ∞. There-

fore, the inequality (2.1) implies that T n f → 0 as n → ∞. 
�
Corollary 2.8 For every unitary operator T and every ϕ ∈ B(H,K), the sequence
� = {ϕT i ∈ B(H,K)}∞i=0 can not be a g-frame.

Proof For every f ∈ H,

‖ f ‖ = ‖(T ∗)nT n f ‖ ≤ ‖T ∗‖n‖T n f ‖ = ‖T n f ‖. (2.2)

If� is a g-frame, then by Theorem 2.7, T n f → 0 as n → ∞, and so by the inequality
(2.2), we get f = 0 which is a contradiction. 
�
Example 2.3 shows that the representation of a g-frame can be normal operator.

Corollary 2.9 Let � = {�i ∈ B(H,K)}∞i=1 and � = {�i ∈ B(H,K)}∞i=1 be two

g-orthonormal bases. Then for every ϕ ∈ B(H,K), the sequence � = {ϕSi−1
�� ∈

B(H,K)}∞i=1 is not a g-frame.

Proof ByTheorem1.5, there exists a unitary operatorU ∈ B(H) such that�i = �iU .
Then T� = U∗T� and

S��S∗
�� = T�T

∗
�T�T

∗
� = T�T

∗
�UU∗T�T

∗
� = S� I dHS� = I dH.

Similary, we get S∗
��S�� = I dH. So S�� is a unitary operator onH and by Corollary

2.8, � is not a g-frame for every ϕ ∈ B(H,K). 
�
Proposition 2.10 LetH1 andH2 be two Hilbert spaces. Assume that T ∈ B(H1), S ∈
B(H2), ϕ ∈ B(H1,K) and ψ ∈ B(H2,K) such that T = V−1SV and ψV = ϕ

for some V ∈ GL(H1,H2). Then {ϕT i ∈ B(H1,K)}∞i=0 is a g-frame if and only if
{ψSi ∈ B(H2,K)}∞i=0 is a g-frame. In the affirmative case V is unique.

Proof For every f ∈ H1, we have

∞∑

i=0

‖ϕT i f ‖2 =
∞∑

i=0

‖ψV (V−1SV )i f ‖2 =
∞∑

i=0

‖ψVV−1Si V f ‖2

=
∞∑

i=0

‖ψSi V f ‖2.
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Since V ∈ GL(H1,H2), the sequence {ϕT i ∈ B(H1,K)}∞i=0 is a g-frame if and only
if � = {ψSi ∈ B(H2,K)}∞i=0 is a g-frame. Moreover, if {ϕT i ∈ B(H1,K)}∞i=0 is a
g-frame and {e j } j∈J is an orthonormal basis forK, then by Theorem 1.6, each f ∈ H1
can be represented by f =∑∞

i=0
∑

j∈J ci j (T
i )∗ϕ∗e j for some {ci j : j ∈ J }∞i=0 ∈ �2.

Hence

(V ∗)−1 f = (V ∗)−1

⎛

⎝
∞∑

i=0

∑

j∈J

ci j (T
i )∗ϕ∗e j

⎞

⎠

= (V ∗)−1

⎛

⎝
∞∑

i=0

∑

j∈J

ci j V
∗(Si−1)∗(V−1)∗V ∗ψ∗e j

⎞

⎠

=
∞∑

i=0

∑

j∈J

ci j (S
i )∗ψ∗e j .

Therefore V is unique. 
�
Proposition 2.11 Let � = {�i ∈ B(H,K)}∞i=1 be a g-frame. If the sequence {ϕSi� ∈
B(H,K)}∞i=0 is a g-frame for some ϕ ∈ B(H,K), then A� < 1.

Proof The proof is the same as the proof of the [27, Proposition 2.7]. 
�
In [27, Corollary 2.4], it has been shown that for Riesz basis {T i f1}∞i=0 the operator T
can not be surjective. A result in [11, Proposition 3.5] and [27, Proposition 2.2] states
that if {T i f }∞i=0 is a frame for an infinite dimensionalH with T ∈ B(H), then T can
not be compact. The following proposition provides a generalization of this result.

Proposition 2.12 Let dimK < ∞ and dimH = ∞. If � = {�i ∈ B(H,K)}∞i=1 is a
g-frame represented by T , then T is not compact.

Proof Let {e j }mj=1 be an orthonormal basis for K and T be compact. By Theorem
2.1, R(T ∗) = span{�∗

i+1e j : 1 ≤ j ≤ m}∞i=1, and therefore by [9, Lemma 2.5.1],
there exists T † ∈ B(H) such that T ∗T † = I dR(T ∗). Since T is compact, T ∗ is
compact and so R(T ∗) is finite-dimensional. Consequently, by Theorem 1.6 we get
H = span{�∗

i e j : 1 ≤ j ≤ m}∞i=1. This implies that H is finite-dimensional which
is a contradiction. 
�
The following example shows that the assumption dimK < ∞ in Proposition 2.12 is
necessary.

Example 2.13 Let T : �2 → �2 be an operator defined by T {an}∞n=1 = (αa1, 0, 0, ...)
which |α| < 1 is a fixed scalar. It is clear that T is compact and � = {T i ∈ B(�2)}∞i=0
is a g-frame. In fact, for every {an}∞n=1 ∈ �2, we have

∞∑

i=0

‖T i {an}∞n=1‖2 = ‖{an}∞n=1‖2 +
∞∑

i=1

‖T i {an}∞n=1‖2
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= ‖{ai }∞n=1‖2 +
∞∑

i=1

‖(αi a1, 0, 0, . . .)‖2.

Then ‖{an}∞n=1‖2 ≤∑∞
i=0 ‖T i {an}∞n=1‖2 ≤ 1

1 − α2 ‖{an}∞n=1‖2.
In the following theorem, by applying a perturbation, we consider a sequence of oper-
ators � in some sense close to the g-Riesz sequence �, and then get some conditions
for � to be g-Riesz sequence.

Theorem 2.14 Let � = {�i ∈ B(H,K)}∞i=1 be a g-Riesz sequence and � = {�i ∈
B(H,K)}∞i=1 be a sequence of operators. Suppose that S� is the g-frame operator
of � (as a g-frame sequence) such that α := ∑∞

i=1 ‖�i − �i‖‖�1S
−1
� ‖ < 1 and

β :=∑∞
i=1 ‖�i − �i‖2 < ∞. Then � is a g-Riesz sequence.

Proof For every {gi }∞i=1 ∈ �2(K), we have

∥∥∥∥∥

∞∑

i=1

�∗
i gi

∥∥∥∥∥ =
∥∥∥∥∥

∞∑

i=1

(�∗
i − �∗

i )gi +
∞∑

i=1

�∗
i gi

∥∥∥∥∥

≤
∞∑

i=1

‖�∗
i − �∗

i ‖‖gi‖ +
∥∥∥∥∥

∞∑

i=1

�∗
i gi

∥∥∥∥∥

≤
( ∞∑

i=1

‖�i − �i‖2
) 1

2 ∥∥{gi }∞i=1

∥∥+√B�‖{gi }∞i=1‖

≤
(√

β +√B�

)
‖{gi }∞i=1‖. (2.3)

By the assumption, � is a g-frame for M = span{�∗
i (K)}∞i=1. Let U : H → H be

defined by

U f =
∞∑

i=1

�∗
i �i S

−1
� PM f , f ∈ H,

where PM : H → H is the orthogonal projection on M. Since {�i S
−1
� PM f }∞i=1 ∈

�2(K), by (2.3) we have

‖U f ‖ ≤ (√β +√B�

)∥∥{�i S
−1
� PM f

}∞
i=1

∥∥ ≤
√

β + √
B�√

A�

‖ f ‖, f ∈ H.

Note that the operator U onM is equal to S��S−1
� . Let f ∈ M, then

‖ f −U f ‖ =
∥∥∥∥∥

∞∑

i=1

�∗
i �i S

−1
� f −

∞∑

i=1

�∗
i �i S

−1
� f

∥∥∥∥∥
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=
∥∥∥∥∥

∞∑

i=1

(�∗
i − �∗

i )�i S
−1
� f

∥∥∥∥∥

≤
∞∑

i=1

‖�i − �i‖‖�i S
−1
� ‖‖ f ‖ = α‖ f ‖.

This implies that ‖U f ‖ ≥ (1− α)‖ f ‖ for all f ∈ M. On the other hand by applying
(1.2), we get U�∗

k = �∗
k for each k ∈ N, because

〈U�∗
k g, f 〉 =

∞∑

i=1

〈�∗
i �i S

−1
� �∗

k g, f 〉 =
∞∑

i=1

〈�∗
k g, S

−1
� �∗

i �i f 〉

= 〈g,�k f 〉 = 〈�∗
k g, f 〉, f ∈ H, g ∈ K.

Consequently, for each {gi }∞i=1 ∈ �2(K) we have

∥∥∥∥∥

∞∑

i=1

�∗
i gi

∥∥∥∥∥ =
∥∥∥∥∥

∞∑

i=1

U�∗
i gi

∥∥∥∥∥ =
∥∥∥∥∥U

∞∑

i=1

�∗
i gi

∥∥∥∥∥

≥ (1 − α)

∥∥∥∥∥

∞∑

i=1

�∗
i gi

∥∥∥∥∥ ≥ (1 − α)
√
A�

( ∞∑

i=1

‖gi‖2
)1/2

.


�

Theorem 2.15 Let T ∈ B(H) and ϕ,ψ ∈ B(H,K). Suppose that � = {ϕT i ∈
B(H,K)}∞i=0 be a g-Riesz sequence and there exists μ ∈ [0, 1) such that ‖ψ‖ <

(1−μ)
√
A� and ‖ψT i‖ ≤ μi‖ψ‖ for each i ∈ N. Then {(ϕ +ψ)T i ∈ B(H,K)}∞i=0

is a g-Riesz sequence.

Proof It is sufficient to show that the sequence {(ϕ + ψ)T i ∈ B(H,K)}∞i=0 satisfies
the conditions of Theorem 2.3. Let S� be the g-frame operator of � (as a g-frame
sequence). It is clear that ‖ϕS−1

� ‖ ≤ 1√
A�

. By the assumptions, we get

∞∑

i=0

‖(ϕ + ψ)T i − ϕT i‖2 =
∞∑

i=0

‖ψT i‖2 ≤
∞∑

i=0

μ2i‖ψ‖2 = ‖ψ‖2
1 − μ2 ,

∞∑

i=0

‖ψT i‖‖ϕS−1
� ‖ ≤ ‖ψ‖

(1 − μ)
√
A�

< 1.

Therefore the proof is completed. 
�
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3 G-Frame representation with a bounded operator and a sequence
of non-zero scalars

Frames of the form {ai T i f }∞i=0 for some non-zero scalars with supi∈N
∣∣∣
ai
ai+1

∣∣∣ < ∞
and T ∈ B(H), were introduced and investigated in [12,27]. In this section, we
introduce this kind of representation for g-frames.

Definition 3.1 We say that a g-frame � = {�i ∈ B(H,K)}∞i=1 has a weighted repre-
sentation if there are a sequence of non-zero scalars {ai }∞i=1 and T ∈ B(H) such that
�i = ai�1T i−1 for all i ∈ N. In the affirmative case, we say that � is represented by(
T , {ai }∞i=1

)
.

Note that for {ai }∞i=1 = {1}∞i=1 in Definition 3.1, we have [22, Definition 2.2]. Also, It
is obvious that if a g-frame � = {�i ∈ B(H,K)}∞i=1 is represented by

(
T , {ai }∞i=1

)
,

then a1 = 1, and

�i+1 = ai+1�1T
i = ai+1

ai
ai�1T

i−1T = ai+1

ai
�i T , i ∈ N.

In [22], it is shown that the g-frame � = {�n ∈ B(C)}∞n=1 with �n = 1

n4 + 1
I dC

has not any representation, but this g-frame is represented by
(
I dC, {an}∞n=1

)
, where

an = 2

n4 + 1
for all n ∈ N.

Theorem 3.2 Let � = {�i ∈ B(H,K)}∞i=1 be a g-frame such that if
∑n

i=1 �∗
i gi = 0

for some n ∈ N, then gi = 0 for every 1 ≤ i ≤ n. Let {ai }∞i=1 be a sequence of non-zero

scalars with μ := supi∈N
∣∣∣
ai
ai+1

∣∣∣ < ∞, and ker T� be invariant under the weighted

right-shift operator Tω, where ω = {ai }∞i=1. Then � is represented by
(
T , {ai }∞i=1

)

where ‖T ‖ ≤ μ

√
B�A−1

� .

Proof Let {e j } j∈J be an orthonormal basis for K. We define the linear map S :
span{�∗

i (K)}∞i=1 → span{�∗
i (K)}∞i=1 with

S
(
�∗

i e j
) = ai

ai+1
�∗

i+1e j .

By the assumption, S is well-defined. Now, we show that S is bounded. Let f =∑
i∈I , j∈G ci j�∗

i e j ∈ span{�∗
i (K)}∞i=1 where I ⊆ N and G ⊆ J are non-empty finite

sets. We may assume that {ci j : j ∈ J }∞i=1 ∈ �2(N × J ) by letting ci j = 0 if
(i, j) /∈ I ×G. By Theorem 1.6, F = {�∗

i e j : j ∈ J }∞i=1 is a frame forH with lower
and upper frame bounds A� and B�, respectively. We can write

{ci j : j ∈ J }∞i=1 = {di j : j ∈ J }∞i=1 + {ri j : j ∈ J }∞i=1
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where {di j : j ∈ J }∞i=1 ∈ ker TF and {ri j : j ∈ J }∞i=1 ∈ (ker TF )⊥. Then{∑
j∈J di j e j

}∞
i=1

belongs to ker T�, and by the assumption we conclude that

∞∑

i=1

∑

j∈J

ai
ai+1

di j�
∗
i+1e j = T�Tω

⎛

⎝

⎧
⎨

⎩
∑

j∈J

di j e j

⎫
⎬

⎭

∞

i=1

⎞

⎠ = 0.

Therefore

‖S f ‖2 =
∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

ai
ai+1

ci j�
∗
i+1e j

∥∥∥∥∥∥

2

=
∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

ai
ai+1

ri j�
∗
i+1e j

∥∥∥∥∥∥

2

≤ μ2B�

∞∑

i=1

∑

j∈J

|ri j |2. (3.1)

Since {ri j : j ∈ J }∞i=1 ∈ (ker TF )⊥, by [9, Lemma 5.5.5], we have

A�

∞∑

i=1

∑

j∈J

|ri j |2 ≤
∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

ri j�
∗
i e j

∥∥∥∥∥∥

2

. (3.2)

Hence by the inequalities (3.1) and (3.2), we have

‖S f ‖2 ≤ μ2B�A−1
�

∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

ri j�
∗
i e j

∥∥∥∥∥∥

2

= μ2B�A−1
�

∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

(di j + ri j )�
∗
i e j

∥∥∥∥∥∥

2

= μ2B�A−1
�

∥∥∥∥∥∥

∞∑

i=1

∑

j∈J

ci j�
∗
i e j

∥∥∥∥∥∥

2

= μ2B�A−1
� ‖ f ‖2.

So, S is bounded and can be extended to Q ∈ B(H). Let T = Q∗, then it is obvious

that � is represented by
(
T , {ai }∞i=1

)
and ‖T ‖ ≤ μ

√
B�A−1

� . 
�

Theorem 3.3 Let � = {�i ∈ B(H,K)}∞i=1 and � = {�i ∈ B(H,K)}∞i=1 be
sequences such that

f =
∞∑

i=1

�∗
i �i f , f ∈ H. (3.3)
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Assume that {ai }∞i=1 is a sequence of non-zero scalars such that for every f ∈ H

the series
∑∞

i=1
ai
ai+1

�∗
i+1�i f converges. Then � = {ai�1T i−1 ∈ B(H,K)}∞i=1 for

some T ∈ B(H) if and only if

� j+1 = a j+1

a j

∞∑

i=1

ai
ai+1

� j�
∗
i �i+1, j ∈ N. (3.4)

Proof First, we assume that � = {ai�1T i−1 ∈ B(H,K)}∞i=1 for some T ∈ B(H).

Then �i+1 = ai+1

ai
�i T for all i ∈ N. By (3.3), we get

T ∗ f =
∞∑

i=1

T ∗�∗
i �i f =

∞∑

i=1

(�i T )∗�i f =
∞∑

i=1

ai
ai+1

�∗
i+1�i f , f ∈ H.

Then

�∗
j+1g = a j+1

a j
T ∗�∗

j g = a j+1

a j

∞∑

i=1

ai
ai+1

�∗
i+1�i�

∗
j g, g ∈ K.

Therefore (3.4) is concluded. For the other implication, let (3.4) hold. We define the
linear operator T : H → H by

T f =
∞∑

i=1

ai
ai+1

�∗
i �i+1 f , f ∈ H.

By the assumption and uniformboundedness principle, T is well-defined and bounded.
Then by (3.4), for every f ∈ H, we have

� j T f =
∞∑

i=1

ai
ai+1

� j�
∗
i �i+1 f = a j

a j+1
� j+1 f , j ∈ N.

This completes the proof. 
�
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