Vol. 19, No. 3 (2021) 2050078 (15 pages) © World Scientific Publishing Company

DOI: 10.1142/S0219691320500782

G-frame representations with bounded operators

Yavar Khedmati* and Fatemeh Ghobadzadeh[†]
Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil 56199-11367, Iran
*khedmati.y@uma.ac.ir; khedmatiy.y@gmail.com
[†]gobadzadehf@yahoo.com

Received 6 March 2020 Revised 4 October 2020 Accepted 21 October 2020 Published 28 December 2020

Dynamical sampling, as introduced by Aldroubi $et\ al.$, deals with frame properties of sequences of the form $\{T^{i-1}f_1\}_{i\in\mathbb{N}}$, where f_1 belongs to Hilbert space \mathcal{H} and $T:\mathcal{H}\to\mathcal{H}$ belongs to certain classes of bounded operators. Christensen $et\ al.$ studied frames for \mathcal{H} with index set \mathbb{N} (or \mathbb{Z}), that has representations in the form $\{T^{i-1}f_1\}_{i\in\mathbb{N}}$ (or $\{T^if_0\}_{i\in\mathbb{Z}}$). As frames of subspaces, fusion frames and generalized translation invariant systems are the special cases of g-frames, the purpose of this paper is to study and get sufficient conditions for g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H},\mathcal{K}): i\in\mathbb{N} \text{ (or }\mathbb{Z})\}$ having the form $\Lambda_{i+1} = \Lambda_1 T^i, T \in B(\mathcal{H})$ (or $\Lambda_{i+1} = \Lambda_0 T^i, T \in GL(\mathcal{H})$). Also, we get the relation between representations of dual g-frames with index set \mathbb{Z} . Finally, we study stability of g-frame representations under some perturbations.

Keywords: Representation; g-frame; dual; stability.

AMS Subject Classification 2020: 41A58, 42C15, 47A05

1. Introduction

In 1952, the concept of frames for Hilbert spaces was defined by Duffin and Schaeffer. Frames are important tools in the signal/image processing, 3,4,15 data compression, 13,22 dynamical sampling, 1,2 etc.

Throughout this paper, I and J are countable sets, \mathcal{H} and \mathcal{K} are separable Hilbert spaces, $\{\mathcal{K}_i: i\in I\}$ is a family of separable Hilbert spaces, $\mathrm{Id}_{\mathcal{H}}$ denotes the identity operator on \mathcal{H} , $B(\mathcal{H})$ and $GL(\mathcal{H})$ denote the set of all bounded linear operators and the set of all invertible bounded linear operators on \mathcal{H} , respectively, and $l^2(\mathcal{H},I)=\{\{g_i\}_{i\in I}:g_i\in\mathcal{H},\sum_{i\in I}\|g_i\|^2<\infty\}$. Also, we will apply $B(\mathcal{H},\mathcal{K})$ for the set of all bounded linear operators from \mathcal{H} to \mathcal{K} . We use $\ker T$ and $\operatorname{ran} T$ for the null space and range of $T\in B(\mathcal{H})$, respectively. We denote the natural, integer and complex numbers by \mathbb{N} , \mathbb{Z} and \mathbb{C} , respectively.

A sequence $F = \{f_i\}_{i \in I}$ in \mathcal{H} is called a frame for \mathcal{H} , if there exist two constants $A_F, B_F > 0$ such that

$$A_F ||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B_F ||f||^2, \quad f \in \mathcal{H}.$$
 (1.1)

Let $F = \{f_i\}_{i \in I}$ be a frame for \mathcal{H} , then the operator

$$T_F: l^2(\mathbb{C}, I) \to \mathcal{H}, \quad T_F(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i,$$

is well-defined and onto, also its adjoint is

$$T_F^*: \mathcal{H} \to l^2(\mathbb{C}, I), \quad T_F^* f = \{\langle f, f_i \rangle\}_{i \in I}.$$

The operators T_F and T_F^* are called the synthesis and analysis operators of F, respectively.

Frames for \mathcal{H} allow each $f \in \mathcal{H}$ to be expanded as an (infinite) linear combination of the frame elements. A frame $G = \{g_i\}_{i \in I}$ such that for every $f \in \mathcal{H}$ we have

$$\sum_{i \in I} \langle f, f_i \rangle g_i = f,$$

is called dual of frame $F = \{f_i\}_{i \in I}$. For more on frames, we refer to Refs. 7 and 17.

Aldroubi et al. introduced the concept of dynamical sampling which dealt with frame properties of sequences of the form $\{T^if_1\}_{i\in\mathbb{N}}$, for $f_1\in\mathcal{H}$ and $T:\mathcal{H}\to\mathcal{H}$ belonging to certain classes of bounded operators.^{1,2} Christensen and Hassannasab analyze frames $F=\{f_i\}_{i\in\mathbb{Z}}$ having the form $F=\{T^if_0\}_{i\in\mathbb{Z}}$, where T is a bijective linear operator (not necessarily bounded) on $\operatorname{span}\{f_i\}_{i\in\mathbb{Z}}$. They show, $(T^*)^{-1}$ is the only possibility of the representing operator for the duals of the frame $F=\{f_i\}_{i\in\mathbb{Z}}=\{T^if_0\}_{i\in\mathbb{Z}}, T\in GL(\mathcal{H}).^9$ They even clarify stability of the representation of frames. Christensen et al. determine the frames that have a representation with a bounded operator and survey the properties of this operator.¹²

Proposition 1.1 (Ref. 10). Consider a frame sequence $F = \{f_i\}_{i \in \mathbb{N}}$ in \mathcal{H} which spans an infinite-dimensional subspace. The following is equivalent:

- (i) F is linearly independent.
- (ii) There exists a linear operator $T: \operatorname{span}\{f_i\}_{i \in \mathbb{N}} \to \mathcal{H} \text{ such that } \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1}f_1\}_{i \in \mathbb{N}}.$

The right-shift operator on $l^2(\mathcal{H}, \mathbb{N})$ and $l^2(\mathcal{H}, \mathbb{Z})$, is defined by

 $\mathcal{T}(\{c_i\}_{i\in\mathbb{N}})=(0,c_1,c_2,\ldots)$ and $\mathcal{T}(\{c_i\}_{i\in\mathbb{Z}})=\{c_{i-1}\}_{i\in\mathbb{Z}}$, respectively. Clearly, the right-shift operator on $l^2(\mathcal{H},\mathbb{Z})$ is unitary and \mathcal{T}^* is the left-shift operator, i.e. $\mathcal{T}^*(\{c_i\}_{i\in\mathbb{Z}})=\{c_{i+1}\}_{i\in\mathbb{Z}}$. A subspace $V\subseteq l^2(\mathcal{H},\mathbb{N})$ is invariant under the right-shift operator if $\mathcal{T}(V)\subseteq V$ and a subspace $V\subseteq l^2(\mathcal{H},\mathbb{Z})$ is invariant under the right-shift (left-shift) operator if $\mathcal{T}(V)\subseteq V$ ($\mathcal{T}^*(V)\subseteq V$).

Theorem 1.2 (Ref. 12). Consider a frame $F = \{f_i\}_{i \in \mathbb{N}}$ in \mathcal{H} . Then the following is equivalent:

- (i) F has a representation $F = \{T^{i-1}f_1\}_{i \in \mathbb{N}}$ for some $T \in B(\mathcal{H})$.
- (ii) For some dual frame $G = \{g_i\}_{i \in \mathbb{N}}$ (and hence all)

$$f_{j+1} = \sum_{i \in \mathbb{N}} \langle f_j, g_i \rangle f_{i+1}, \quad \forall j \in \mathbb{N}.$$

(iii) The ker T_F is invariant under the right-shift operator.

In the affirmative case, let $G = \{g_i\}_{i \in \mathbb{N}}$ denote an arbitrary dual frame of F, the operator T has the form

$$Tf = \sum_{i \in \mathbb{N}} \langle f, g_i \rangle f_{i+1}, \quad \forall f \in \mathcal{H},$$

and
$$1 \le ||T|| \le \sqrt{B_F A_F^{-1}}$$
.

In 2006, generalized frames (or simply g-frames) and g-Riesz bases were introduced by Sun.²³ "G-frames are natural generalizations of frames which cover many other recent generalizations of frames, e.g. bounded quasi-projectors, frames of subspaces, outer frames, oblique frames, pseudo-frames and a class of time-frequency localization operators.²⁴ The interest in g-frames arises from the fact that they provide more choices on analyzing functions than frame expansion coefficients²³ and also every fusion frame is a g-frames,^{5,7}". Generalized translation invariant (GTI) frames can be realized as g-frames,¹⁸ so for motivating to answer the similar problems relevant to shift invariant and GTI systems in Ref. 8, we generalize some results of the frame representations with bounded operators in Refs. 9 and 12 to g-frames. Now, we summarize some facts about g-frames from Refs. 21 and 23. For more on related subjects to g-frames, we refer to Refs. 16, 19 and 20.

Definition 1.3. We say that $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ is a generalized frame, or simply g-frame, for \mathcal{H} with respect to $\{\mathcal{K}_i : i \in I\}$ if there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that

$$A_{\Lambda} \|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B_{\Lambda} \|f\|^2, \quad f \in \mathcal{H}.$$
 (1.2)

We call A_{Λ}, B_{Λ} the lower and upper g-frame bounds, respectively. Λ is called a tight g-frame if $A_{\Lambda} = B_{\Lambda}$, and a Parseval g-frame if $A_{\Lambda} = B_{\Lambda} = 1$. If for each $i \in I$, $\mathcal{K}_i = \mathcal{K}$, then, Λ is called a g-frame for \mathcal{H} with respect to \mathcal{K} . Note that for a family $\{\mathcal{K}_i\}_{i\in I}$ of Hilbert spaces, there exists a Hilbert space $\mathcal{K} = \bigoplus_{i\in I}\mathcal{K}_i$ such that for all $i \in I$, $\mathcal{K}_i \subseteq \mathcal{K}$, where $\bigoplus_{i\in I}\mathcal{K}_i$ is the direct sum of $\{\mathcal{K}_i\}_{i\in I}$. A family Λ is called a g-Bessel family for \mathcal{H} with respect to $\{\mathcal{K}_i: i \in I\}$ if the right-hand inequality in (1.2) holds for all $f \in \mathcal{H}$, in this case, B_{Λ} is called a g-Bessel bound.

If there is no confusion, we use g-frame (g-Bessel family) instead of g-frame for \mathcal{H} with respect to $\{\mathcal{K}_i : i \in I\}$ (g-Bessel family for \mathcal{H} with respect to $\{\mathcal{K}_i : i \in I\}$).

Example 1.4 (Ref. 23). Let $\{f_i\}_{i\in I}$ be a frame for \mathcal{H} . Suppose that $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in I\}$, where

$$\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H}.$$

It is easy to see that Λ is a g-frame.

For a g-frame Λ , there exists a unique positive and invertible operator $S_{\Lambda}: \mathcal{H} \to \mathcal{H}$ such that

$$S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f, \quad f \in \mathcal{H},$$

and $A_{\Lambda}.\mathrm{Id}_{\mathcal{H}} \leq S_{\Lambda} \leq B_{\Lambda}.\mathrm{Id}_{\mathcal{H}}$. Consider the space

$$\left(\sum_{i\in I} \oplus \mathcal{K}_i\right)_{l^2} = \left\{ \{g_i\}_{i\in I} : g_i \in \mathcal{K}_i, i \in I \text{ and } \sum_{i\in I} \|g_i\|^2 < \infty \right\}.$$

It is clear that $(\sum_{i\in I} \oplus \mathcal{K}_i)_{l^2}$ is a Hilbert space with pointwise operations and with the inner product given by

$$\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.$$

For a g-Bessl family Λ , the synthesis operator $T_{\Lambda}: (\sum_{i \in I} \oplus \mathcal{K}_i)_{l^2} \to \mathcal{H}$ is defined by

$$T_{\Lambda}(\{g_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^* g_i.$$

The adjoint of T_{Λ} , $T_{\Lambda}^*: \mathcal{H} \to (\sum_{i \in I} \oplus \mathcal{K}_i)_{l^2}$ is called the analysis operator of Λ and is as follows:

$$T_{\Lambda}^* f = \{\Lambda_i f\}_{i \in I}, \quad f \in \mathcal{H}.$$

It is obvious that $S_{\Lambda} = T_{\Lambda} T_{\Lambda}^*$.

Definition 1.5. Two g-frames Λ and Θ are called dual if

$$\sum_{i \in I} \Lambda_i^* \Theta_i f = f, \quad f \in \mathcal{H}.$$

For a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$, the g-frame $\widetilde{\Lambda} = \{\Lambda_i S_{\Lambda}^{-1} \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ is a dual of Λ , which is called the canonical dual.

Definition 1.6. Consider a family $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}.$

- (i) We say that Λ is g-complete if $\{f : \Lambda_i f = 0, i \in I\} = \{0\}$.
- (ii) We say that Λ is a g-Riesz basis if Λ is g-complete and there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that for any finite set $\{g_i\}_{i \in I_n}$,

$$A_{\Lambda} \sum_{i \in I_n} \|g_i\|^2 \le \|\sum_{i \in I_n} \Lambda_i^* g_i\|^2$$

$$\le B_{\Lambda} \sum_{i \in I_n} \|g_i\|^2, \quad g_i \in \mathcal{K}_i.$$

(iii) We say that Λ is a g-orthonormal basis if it satisfies the following:

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in I, \ g_i \in \mathcal{K}_i, \ g_j \in \mathcal{K}_j,$$
$$\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.$$

Theorem 1.7 (Ref. 23). A family $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in I\}$ is a g-Riesz basis if and only if there exist a g-orthonormal basis Θ and $U \in GL(\mathcal{H})$ such that $\Lambda_i = \Theta_i U, i \in I$.

Theorem 1.8 (Ref. 23). Let for $i \in I$, $\{e_{i,j}\}_{j \in J_i}$ be an orthonormal basis for K_i .

- (i) Λ is a g-frame (respectively, g-Bessel family, g-Riesz basis, g-orthonormal basis) if and only if $\{\Lambda_i^* e_{i,j}\}_{i \in I, j \in J_i}$ is a frame (respectively, Bessel sequence, Riesz basis, orthonormal basis).
- (ii) Λ and Θ are dual if and only if $\{\Lambda_i^* e_{i,j}\}_{i \in I, j \in J_i}$ and $\{\Theta_i^* e_{i,j}\}_{i \in I, j \in J_i}$ are dual.

In this paper, we generalize some recent results of Christensen *et al.*^{9,12} to investigate representations for g-frames with bounded operators.

2. Representations of G-Frames

In this section, by generalizing some results of Refs. 9 and 12, we introduce representations for g-frames with bounded operators and give some examples of g-frames with a representation and without any representations. In Theorem 2.5, we get sufficient conditions for g-frames to have a representation with a bounded operator. Also, Theorem 2.5 and Proposition 2.10 show that for g-frames $\Lambda = \{\Lambda_1 T^{i-1} : i \in \mathbb{N}\}$, the boundedness of T is equivalent to the invariance of $\ker T_{\Lambda}$ under the right-shift operator.

Remark 2.1. Consider a frame $F = \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1}f_1\}_{i \in \mathbb{N}}$ for \mathcal{H} with $T \in B(\mathcal{H})$. For the g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\}$ where

$$\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H},$$

we have

$$\Lambda_{i+1}f = \langle f, f_{i+1} \rangle = \langle f, Tf_i \rangle = \langle T^*f, f_i \rangle = \Lambda_i T^*f, \quad f \in \mathcal{H}.$$

Therefore, $\Lambda_i = \Lambda_1(T^*)^{i-1}$, $i \in \mathbb{N}$. Conversely, if we consider a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\} = \{\Lambda_1 T^{i-1} : i \in \mathbb{N}\}$ for $T \in B(\mathcal{H})$, then by the Riesz representation theorem, $\Lambda_i f = \langle f, f_i \rangle, i \in \mathbb{N}$ and $f, f_i \in \mathcal{H}$, where $F = \{f_i\}_{i \in \mathbb{N}}$ is a frame such that $f_i = (T^*)^{i-1} f_1, i \in \mathbb{N}$.

Now, we are motivated to study g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$, where $\Lambda_i = \Lambda_1 T^{i-1}$ with $T \in B(\mathcal{H})$.

Definition 2.2. We say that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ has a representation if there is a $T \in B(\mathcal{H})$ such that $\Lambda_i = \Lambda_1 T^{i-1}, i \in \mathbb{N}$. In the affirmative case, we say that Λ is represented by T.

In the following, we give some q-frames that have a representation.

Example 2.3. (i) The g-frame of finite elements $\Lambda = \{\Lambda_i \in GL(\mathcal{H}) : i = 1, 2\}$ is represented by $\Lambda_1^{-1}\Lambda_2$.

- (ii) The tight g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}) : i \in \mathbb{N}\}$ with $\Lambda_i = \frac{2^{i-1}}{3^{i-2}} \mathrm{Id}_{\mathcal{H}}$ is represented by $\frac{2}{3} \mathrm{Id}_{\mathcal{H}}$.
- (iii) Let $F = \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1}f_1\}_{i \in \mathbb{N}}$ be a frame for \mathcal{H} , where $T \in B(\mathcal{H})$. Then the g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}^2) : i \in \mathbb{N}\}$ with $\Lambda_i f = (\langle f, f_i \rangle, \langle f, f_{i+1} \rangle), f \in \mathcal{H}$, is represented by T^* .

Now, we give a g-frame without any representations.

Example 2.4. Consider the tight g-frame $\Lambda = \{\Lambda_n \in B(\mathbb{C}) : n \in \mathbb{N}\}$ with $\Lambda_n = \frac{1}{n^4+1} \mathrm{Id}_{\mathbb{C}}$. Since $\Lambda_1 = \frac{1}{2} \mathrm{Id}_{\mathbb{C}}$ and $\Lambda_2 = \frac{1}{17} \mathrm{Id}_{\mathbb{C}}$, the g-frame Λ has not any representations.

By generalizing a result of Ref. 10, the following theorem gives sufficient conditions for a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ to have a representation.

Theorem 2.5. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be a g-frame such that for every finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}, \sum_{i \in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$ for every $i \in I_n$. Suppose that $\ker T_{\Lambda}$ is invariant under the right-shift operator. Then, Λ is represented by $T \in B(\mathcal{H})$, where $||T|| \leq \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}$.

Proof. Let $\{e_j\}_{j\in J}$ be an orthonormal basis for \mathcal{K} . We define the linear map $S: \operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{N}} \to \operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{N}}$ with

$$S(\Lambda_i^* e_j) = \Lambda_{i+1}^* e_j.$$

By the assumption, for any finite index sets $I_n \subset \mathbb{N}$ and $J_m \subset J$, $\sum_{i \in I_n, j \in J_m} c_{ij} \Lambda_i^* e_j = \sum_{i \in I_n} \Lambda_i^* (\sum_{j \in J_m} c_{ij} e_j) = 0$ implies $\sum_{j \in J_m} c_{ij} e_j = 0$ and so $c_{ij} = 0$ for $i \in I_n$, $j \in J_m$. Therefore, S is well-defined. Now, we show that S is bounded. Let $f = \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_i^* e_j$ for $c_{ij} \in \ell^2(\mathbb{C}, \mathbb{N} \times J)$ with $c_{ij} = 0$, $i \notin I_n$ or $j \notin J_m$. By Theorem 1.8, $F = \{\Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J}$ is a frame for \mathcal{H} with lower and upper frame bounds A_{Λ} and B_{Λ} , respectively. We can write $\{c_{ij}\}_{i \in \mathbb{N}, j \in J} = \{d_{ij}\}_{i \in \mathbb{N}, j \in J} + \{r_{ij}\}_{i \in \mathbb{N}, j \in J}$ with $\{d_{ij}\}_{i \in \mathbb{N}, j \in J} \in \ker T_F$ and $\{r_{ij}\}_{i \in \mathbb{N}, j \in J} \in (\ker T_F)^{\perp}$. Since $\sum_{i \in \mathbb{N}} \Lambda_i^* (\sum_{j \in J} d_{ij} e_j) = \sum_{i \in \mathbb{N}, j \in J} d_{ij} \Lambda_i^* e_j = 0$ and $\{\sum_{j \in J} d_{ij} e_j\}_{i \in \mathbb{N}} \in \ker T_{\Lambda}$, then by the assumption, we conclude that

$$\sum_{i \in \mathbb{N}, j \in J} d_{ij} \Lambda_{i+1}^* e_j = \sum_{i \in \mathbb{N}} \Lambda_{i+1}^* \left(\sum_{j \in J} d_{ij} e_j \right) = 0,$$

and so the same as in the proof of Ref. 12, we have

$$||Sf||^2 = \left\| \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_{i+1}^* e_j \right\|^2 = \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_{i+1}^* e_j \right\|^2 \le B_{\Lambda} \sum_{i \in \mathbb{N}, j \in J} |r_{ij}|^2.$$
 (2.1)

Since $\{r_{ij}\}_{i\in\mathbb{N},j\in J}\in(\ker T_F)^{\perp}$, by Lemma 5.5.5 of Ref. 7, we have

$$A_{\Lambda} \sum_{i \in \mathbb{N}, j \in J} |r_{ij}|^2 \le \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_i^* e_j \right\|^2. \tag{2.2}$$

Therefore, by the inequalities (2.1) and (2.2), we have

$$||Sf||^{2} \leq B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_{i}^{*} e_{j} \right\|^{2} = B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} (d_{ij} + r_{ij}) \Lambda_{i}^{*} e_{j} \right\|^{2}$$
$$= B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_{i}^{*} e_{j} \right\|^{2}$$
$$= B_{\Lambda} A_{\Lambda}^{-1} ||f||^{2}.$$

So, S is bounded and can be extended to $\bar{S} \in B(\mathcal{H})$. It is obvious that Λ is represented by $T = (\bar{S})^*$ and $||T|| \leq \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}$. In fact, for every $g \in \mathcal{K}$, we have

$$\bar{S}\Lambda_i^* g = \bar{S}\Lambda_i^* \left(\sum_{j \in J} c_j e_j \right) = \sum_{j \in J} c_j \bar{S}\Lambda_i^* e_j$$

$$= \sum_{j \in J} c_j S \Lambda_i^* e_j = \sum_{j \in J} c_j \Lambda_{i+1}^* e_j$$

$$= \Lambda_{i+1}^* \left(\sum_{j \in J} c_j e_j \right) = \Lambda_{i+1}^* g, \quad i \in \mathbb{N}.$$

Corollary 2.6. Every g-orthonormal basis has a representation.

Proof. For every finite set $\{g_i\}_{i\in I_n}\subset \mathcal{K}$, we have

$$\left\| \sum_{i \in I_n} \Lambda_i^* g_i \right\|^2 = \left\langle \sum_{i \in I_n} \Lambda_i^* g_i, \sum_{j \in I_n} \Lambda_j^* g_j \right\rangle = \sum_{i \in I_n} \sum_{j \in I_n} \left\langle \Lambda_i^* g_i, \Lambda_j^* g_j \right\rangle$$
$$= \sum_{i \in I_n} \left\langle g_i, g_i \right\rangle = \sum_{i \in I_n} \|g_i\|^2.$$

So $\sum_{i \in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$ for any $i \in I_n$. Similarly, we have $\ker T_{\Lambda} = \{0\}$, that is invariant under the right-shift operator. Then, by Theorem 2.5 the proof is completed.

Remark 2.7. Consider a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ which is represented by T. For $S \in GL(\mathcal{H})$, the family $\Lambda S = \{\Lambda_i S \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame (Ref. 20, Corollary 2.26), which is represented by $S^{-1}TS$.

Corollary 2.8. Every g-Riesz basis has a representation.

Proof. By Theorem 1.7, Corollary 2.6 and Remark 2.7, the proof is completed. \Box

Now, we give an example to show that the converse of Theorem 2.5 is not satisfied.

Example 2.9. Consider the tight g-frame $\Lambda = \{\Lambda_i \in B(l^2(\mathcal{H}, \mathbb{N})) : i \in \mathbb{N}\}$ with $\Lambda_i = (\frac{1}{2})^{i-1} \mathrm{Id}_{l^2(\mathcal{H}, \mathbb{N})}$. It is obvious that Λ is represented by $\frac{1}{2} \mathrm{Id}_{l^2(\mathcal{H}, \mathbb{N})}$, but $\Lambda_1^*(\frac{1}{2}e_1) + \Lambda_2^*(-e_1) = 0$ for $e_1 = (1, 0, 0, \ldots)$.

Proposition 2.10. Let a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be represented by T. Then $\ker T_{\Lambda}$ is invariant under the right-shift operator \mathcal{T} .

Proof. For any $\{g_i\}_{i\in\mathbb{N}}\in\ker T_\Lambda$, we have

$$T_{\Lambda}\mathcal{T}\{g_i\}_{i\in\mathbb{N}} = \sum_{i\in\mathbb{N}} \Lambda_{i+1}^* g_i = \sum_{i\in\mathbb{N}} T^* \Lambda_i^* g_i = T^* \left(\sum_{i\in\mathbb{N}} \Lambda_i^* g_i\right) = 0.$$

The following proposition shows that the converse of Theorem 2.5 is satisfied for one-dimensional Hilbert space \mathcal{K} .

Proposition 2.11. Let \mathcal{H} and \mathcal{K} be infinite-dimensional and one-dimensional Hilbert spaces, respectively, and a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be represented by T. Hence, $\sum_{i \in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$, for any finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}$.

Proof. Let $\{e_1\}$ be a basis for \mathcal{K} . By Theorem 1.8, the sequence $F = \{\Lambda_i^* e_1\}_{i \in \mathbb{N}}$ is a frame for \mathcal{H} . Since the g-frame Λ is represented by T, the frame F is represented by T^* , i.e.

$$\Lambda_i^* e_1 = (T^*)^{i-1} \Lambda_1^* e_1,$$

and so by Proposition 1.1, F is linearly independent. We have

$$0 = \sum_{i \in I_n} \Lambda_i^* g_i = \sum_{i \in I_n} \Lambda_i^* (\alpha_i e_1) = \sum_{i \in I_n} \alpha_i \Lambda_i^* e_1, \quad \alpha_i \in \mathbb{C},$$

therefore, for any $i \in I_n$, $\alpha_i = 0$ and so $g_i = 0$.

Remark 2.12. Proposition 2.11 shows that for one-dimensional Hilbert space \mathcal{K} with basis $\{e_1\}$, when a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ has a representation, then the frame $\{\Lambda_i^*e_1\}_{i\in\mathbb{N}}$ has a representation. For a finite-dimensional Hilbert space \mathcal{K} with orthonormal basis $\{e_j\}_{j=1}^n$, when a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is represented by T, then the frame $F = \{\Lambda_i^*e_j, j = 1, \dots, n\}_{i\in\mathbb{N}}$ can be represented by T^* and finite vectors $\{\Lambda_1^*e_1, \dots, \Lambda_1^*e_n\}$, i.e. $F = \{(T^*)^{i-1}\Lambda_1^*e_j, j = 1, \dots, n\}_{i\in\mathbb{N}}$, then it can be worked on g-frames that be represented by a bounded operator and finite subset of the g-frame. But, Example 2.9 shows that for infinite-dimensional Hilbert space $K = l^2(\mathcal{H}, \mathbb{N})$ with orthonormal basis $\{e_j\}_{j\in I}$, this may not happen, i.e. a g-frame Λ has a representation and the frame $\{\Lambda_i^*e_j\}_{i,j\in\mathbb{N}}$ does

not have. By Theorem 1.8, for a g-Riesz basis $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$, the sequence $F = \{\Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in I}$ is a Riesz basis. By Corollary 2.8 and [12, Example 2.2], both of Λ and F have representations. What is the relation between these two representations (open problem)?

Now, we want to discuss the concept of representation for g-frames with index set \mathbb{Z} .

Definition 2.13. We say that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ has a representation if there is a $T \in GL(\mathcal{H})$ such that $\Lambda_i = \Lambda_0 T^i, i \in \mathbb{Z}$. In the affirmative case, we say that Λ is represented by T.

Example 2.14. Consider the tight g-frame $\Lambda = \{\Lambda_n \in B(\mathbb{C}) : n \in \mathbb{Z}\}$ with $\Lambda_n = \frac{1}{n^2 - 2n + 4} \mathrm{Id}_{\mathbb{C}}$. Since $\Lambda_1 = \frac{1}{3} \mathrm{Id}_{\mathbb{C}}$ and $\Lambda_3 = \frac{1}{7} \mathrm{Id}_{\mathbb{C}}$, the g-frame Λ has not any representation.

A subspace $V \subseteq l^2(\mathcal{H}, \mathbb{Z})$ is said invariant under the right-shift (left-shift) operator if $\mathcal{T}(V) \subseteq V$ ($\mathcal{T}^*(V) \subseteq V$).

Theorem 2.15. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ be a g-frame such that for every finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}, \sum_{i \in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$ for every $i \in I_n$. Suppose that $\ker T_{\Lambda}$ is invariant under the right-shift and left-shift operators. Then, Λ is represented by $T \in GL(\mathcal{H})$, where $||T|| \leq \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}$.

Proof. Let $\{e_j\}_{j\in J}$ be an orthonormal basis for \mathcal{K} . We define the linear map $S: \operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in \mathbb{Z}} \to \operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in \mathbb{Z}}$ with

$$S(\Lambda_i^* e_j) = \Lambda_{i+1}^* e_j.$$

Similar to the proof of the Theorem 2.5, S is well-defined and bounded with $||S|| \le \sqrt{B_{\Lambda}A_{\Lambda}^{-1}}$. Consider the linear map S^{-1} : span $\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}} \to \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ with

$$S^{-1}(\Lambda_i^* e_j) = \Lambda_{i-1}^* e_j.$$

Similar to S, the map S^{-1} is also well-defined and since $\ker T_{\Lambda}$ is invariant under the left-shift operator, S^{-1} is bounded. It is obvious that $SS^{-1} = S^{-1}S = \operatorname{Id}_{\operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}}$. The operators S and S^{-1} can be extended on \mathcal{H} . It is obvious that Λ is represented by $T = (\bar{S})^*$, where $\bar{S} \in GL(\mathcal{H})$ is the extension of S and $\|T\| \leq \sqrt{B_{\Lambda}A_{\Lambda}^{-1}}$.

Remark 2.16. Note that if $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ is a g-orthonormal basis or g-Riesz basis, then by Theorem 2.15, Λ has a representation.

Theorem 2.17. Let a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ be represented by T, then $\ker T_{\Lambda}$ is invariant under the right-shift and left-shift operators and

$$1 \le \|T\| \le \sqrt{B_\Lambda A_\Lambda^{-1}}, \quad 1 \le \|T^{-1}\| \le \sqrt{B_\Lambda A_\Lambda^{-1}}.$$

Proof. Similar to Proposition 2.10, $\ker T_{\Lambda}$ is invariant under the right-shift operator. Also for $\{g_i\}_{i\in\mathbb{Z}}\in\ker T_{\Lambda}$,

$$T_{\Lambda} \mathcal{T}^* \{ g_i \}_{i \in \mathbb{Z}} = \sum_{i \in \mathbb{Z}} \Lambda_{i-1}^* g_i = \sum_{i \in \mathbb{Z}} (T^{i-1})^* \Lambda_0^* g_i$$
$$= (T^{-1})^* \left(\sum_{i \in \mathbb{Z}} (T^i)^* \Lambda_0^* g_i \right)$$
$$= (T^{-1})^* \left(\sum_{i \in \mathbb{Z}} \Lambda_i^* g_i \right)$$
$$= (T^{-1})^* T_{\Lambda} \{ g_i \}_{i \in \mathbb{Z}} = 0.$$

So, $\ker T_{\Lambda}$ is also invariant under the left-shift operator. Now for some fixed $n \in \mathbb{N}$ and $0 \neq f \in \mathcal{H}$ we have

$$A_{\Lambda} \|f\|^{2} \leq \sum_{i \in \mathbb{Z}} \|\Lambda_{i} f\|^{2} = \sum_{i \in \mathbb{Z}} \|\Lambda_{0} T^{i} f\|^{2} = \sum_{i \in \mathbb{Z}} \|\Lambda_{0} T^{i} T^{-n} T^{n} f\|^{2}$$

$$= \sum_{i \in \mathbb{Z}} \|\Lambda_{0} T^{i-n} T^{n} f\|^{2}$$

$$= \sum_{i \in \mathbb{Z}} \|\Lambda_{i} T^{n} f\|^{2}$$

$$< B_{\Lambda} \|T^{n} f\|^{2} < B_{\Lambda} \|T\|^{2n} \|f\|^{2},$$

that implies $||T|| \geq 1$. Since for any $i \in \mathbb{Z}$, $\Lambda_i T = \Lambda_{i+1}$, we have $T^* \Lambda_i^* e_j = \Lambda_{i+1}^* e_j$. So, T^* is the operator \bar{S} that is defined in the proof of Theorem 2.5, just on $\operatorname{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ and therefore we have $||T|| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$, alike. Since $\Lambda = \{\Lambda_{-i} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\} = \{\Lambda_0(T^{-1})^i : i \in \mathbb{Z}\}$, by replacing T^{-1} instead of T, we get $1 \leq ||T^{-1}|| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$.

Example 2.3, (ii) shows that for the index set \mathbb{N} , $1 \leq ||T||$ does not happen, in general.

Corollary 2.18. Let a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ be represented by $T \in GL(\mathcal{H})$. Then the following hold:

(i) If Λ is a tight g-frame, then $||T|| = ||T^{-1}|| = 1$ and so T is isometry.

(ii)
$$||S_{\Lambda}^{\frac{1}{2}}TS_{\Lambda}^{-\frac{1}{2}}|| = ||S_{\Lambda}^{\frac{1}{2}}T^{-1}S_{\Lambda}^{\frac{-1}{2}}|| = 1.$$

The authors of Ref. 11 considered sequences in \mathcal{H} of the form $F = \{T^i f_0\}_{i \in I}$, with a linear operator T to study for which bounded operator T and vector $f_0 \in \mathcal{H}$, F is a frame for \mathcal{H} . In Proposition 3.5 of Ref. 12, it was proved that if the operator $T \in B(\mathcal{H})$ is compact, then the sequence $\{T^i f_0\}_{i \in I}$ cannot be a frame for infinite-dimensional \mathcal{H} . Someone can study these results for family of operators $\{\Lambda_0 T^i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ for $T \in B(\mathcal{H})$ and $\Lambda_0 \in B(\mathcal{H}, \mathcal{K})$.

3. Representations of Dual G-Frames

The purpose of this section is to get a necessary and sufficient condition for a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in \mathbb{N}\}$ to have a representation, by applying the concept of duality. Also, for some g-frames with representation, we get a dual with representation and in one case without representation. In the end, we get the relation between representations of dual g-frames with index set \mathbb{Z} . The proofs of the results are similar to Refs. 9 and 12.

Theorem 3.1. A g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is represented by T if and only if for a dual $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}\$ of Λ (and hence all),

$$\Lambda_{k+1} = \sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1}.$$

Proof. First, assume that Λ is represented by T. For any $g \in \mathcal{K}$ we have

$$\begin{split} \Lambda_{k+1}^* g &= T^* \Lambda_k^* g = T^* \left(\sum_{i \in \mathbb{N}} \Lambda_i^* \Theta_i \Lambda_k^* g \right) \\ &= \sum_{i \in \mathbb{N}} T^* \Lambda_i^* \Theta_i \Lambda_k^* g \\ &= \sum_{i \in \mathbb{N}} \Lambda_{i+1}^* \Theta_i \Lambda_k^* g \\ &= \sum_{i \in \mathbb{N}} (\Lambda_k \Theta_i^* \Lambda_{i+1})^* g \\ &= \left(\sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1} \right)^* g, \end{split}$$

then, $\Lambda_{k+1} = \sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1}$.

Conversely, it is obvious that $\Lambda_k T = \Lambda_{k+1}$ for $Tf = \sum_{i \in \mathbb{N}} \Theta_i^* \Lambda_{i+1} f$.

Remark 3.2. By Corollary 3.3 of Ref. 23, for a g-Riesz basis $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$, we have

$$\left\langle \sum_{i \in \mathbb{N}} \Lambda_k \widetilde{\Lambda}_i^* \Lambda_{i+1} f, g \right\rangle = \sum_{i \in \mathbb{N}} \langle \widetilde{\Lambda}_i^* \Lambda_{i+1} f, \Lambda_k^* g \rangle$$
$$= \sum_{i \in \mathbb{N}} \delta_{i,k} \langle \Lambda_{i+1} f, g \rangle = \langle \Lambda_{k+1} f, g \rangle, \quad f \in \mathcal{H}, \ g \in \mathcal{K},$$

therefore, by Theorem 3.1, Λ has a representation.

In the following, we want to investigate that if a g-frame Λ has a representation, its duals have representations or not. If so, what is the relation between their representations?

- **Example 3.3.** (i) Assume that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is represented by T. Then, by Remark 2.7, the canonical dual $\widetilde{\Lambda}$ is represented by $S_{\Lambda}TS_{\Lambda}^{-1}$.
- (ii) Consider the g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}) : i \in \mathbb{N}\}$ with $\Lambda_i = (\frac{2}{3})^i \mathrm{Id}_{\mathcal{H}}$, which is represented by $\frac{2}{3}\mathrm{Id}_{\mathcal{H}}$. The g-frame $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ with $\Theta_i = (\frac{3}{4})^i \mathrm{Id}_{\mathcal{H}}$ is a dual of Λ which is represented by $\frac{3}{4}\mathrm{Id}_{\mathcal{H}}$.
- (iii) The g-frame of finite elements $\Lambda = \{\Lambda_i \in B(\mathbb{C}) : i = 1, 2, 3\}$ with $\Lambda_i = 2^{i-1} \mathrm{Id}_{\mathbb{C}}$ is represented by $2\mathrm{Id}_{\mathbb{C}}$, but the dual $\Theta = \{\Theta_i \in B(\mathbb{C}) : i = 1, 2, 3\}$ of Λ with $\Theta_1 = -2\mathrm{Id}_{\mathbb{C}}$, $\Theta_2 = \mathrm{Id}_{\mathbb{C}}$ and $\Theta_3 = \frac{1}{4}\mathrm{Id}_{\mathbb{C}}$ does not have any representation. Note that the dual $\Gamma = \{\Gamma_i \in B(\mathbb{C}) : i = 1, 2, 3\}$ of Λ with $\Gamma_i = \frac{1}{3}(\frac{1}{2})^{i-1}\mathrm{Id}_{\mathbb{C}}$ is represented by $\frac{1}{2}\mathrm{Id}_{\mathbb{C}}$.

Proposition 3.4. Let a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}$ be represented by $T \in GL(\mathcal{H})$. Then, the canonical dual $\widetilde{\Lambda}$ is represented by $S_{\Lambda}TS_{\Lambda}^{-1} = (T^*)^{-1}$.

Proof. It is obvious that $\widetilde{\Lambda}$ is represented by $S_{\Lambda}TS_{\Lambda}^{-1}$. For any $\{g_i\}_{i\in\mathbb{Z}}\in l^2(\mathcal{K},\mathbb{Z})$,

$$T^*T_{\Lambda}\{g_i\}_{i\in\mathbb{Z}} = \sum_{i\in\mathbb{Z}} T^*\Lambda_i^*g_i = \sum_{i\in\mathbb{Z}} (\Lambda_i T)^*g_i = \sum_{i\in\mathbb{Z}} \Lambda_{i+1}^*g_i = T_{\Lambda}T\{g_i\}_{i\in\mathbb{Z}}.$$

So, we have

$$T^*S_{\Lambda}T = T^*T_{\Lambda}T_{\Lambda}^*T = T^*T_{\Lambda}(T^*T_{\Lambda})^* = T_{\Lambda}TT^*T_{\Lambda}^* = T_{\Lambda}T_{\Lambda}^* = S_{\Lambda}.$$
 Therefore, $S_{\Lambda}TS_{\Lambda}^{-1} = (T^*)^{-1}$.

Remark 3.5. Let $F = \{f_i\}_{i \in \mathbb{Z}}$ and $G = \{g_i\}_{i \in \mathbb{Z}}$ be dual frames that are represented by $T, S \in GL(\mathcal{H})$, respectively. Then, by Remark 2.1, the dual g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{Z}\}$ with $\Lambda_i f = \langle f, f_i \rangle$ and $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{Z}\}$ with $\Theta_i f = \langle f, g_i \rangle$ are represented by $T^*, S^* \in GL(\mathcal{H})$, respectively. By Lemma 3.3 of Ref. 9, $S = (T^*)^{-1}$.

The relation between representations of dual g-frames by the index set $\mathbb Z$ is given in what follows.

Theorem 3.6. Assume that $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\} = \{\Lambda_0 T^i : i \in \mathbb{Z}\}$ and $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\} = \{\Theta_0 S^i : i \in \mathbb{Z}\}$ are dual g-frames, where $T, S \in GL(\mathcal{H})$. Then, $S = (T^*)^{-1}$.

Proof. For any $f \in \mathcal{H}$, we have

$$\begin{split} f &= \sum_{i \in \mathbb{Z}} \Lambda_i^* \Theta_i f = \sum_{i \in \mathbb{Z}} (T^*)^i \Lambda_0^* \Theta_0 S^i f \\ &= T^* \sum_{i \in \mathbb{Z}} (T^*)^{i-1} \Lambda_0^* \Theta_0 S^{i-1} S f = T^* \sum_{i \in \mathbb{Z}} \Lambda_i^* \Theta_i S f = T^* S f. \end{split}$$

Since $T \in GL(\mathcal{H})$, the proof is completed.

In general, Theorem 3.6 is not true for the index set N (see Example 3.1, (ii)).

4. Stability of G-Frame Representations

Christensen considered the stability of the frames in Hilbert spaces under perturbations.⁶ Similar to ordinary frames, Sun proved that g-frames are stable under small perturbations and have studied the stability of dual g-frames.²⁴ You can find more perturbation results for g-frames in Ref. 20. In Ref. 9, we find a perturbation condition that preserves the existence of a representation for a frame. In this section, we study the stability of g-frame representations under some perturbations.

Theorem 4.1. Suppose that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in I\}$, $(I = \mathbb{N} \text{ or } \mathbb{Z})$ has a representation and $\Gamma = \{\Gamma_i \in B(\mathcal{H}, \mathcal{K}) : i \in I\}$ is a family of operators such that for every finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}$,

$$\left\| \sum_{i \in I_n} (\Lambda_i - \Gamma_i)^* g_i \right\| \le \lambda \left\| \sum_{i \in I_n} \Lambda_i^* g_i \right\| + \mu \left\| \sum_{i \in I_n} \Gamma_i^* g_i \right\|, \tag{4.1}$$

where $0 \leq \max\{\lambda, \mu\} < 1$. Then, the family Γ is a g-frame that has a representation.

Proof. The family Γ is a g-frame (Ref. 20, Theorem 3.5). By the inequality (4.1), we get $\ker T_{\Lambda} = \ker T_{\Gamma}$. The operator T_{Λ} is onto (Ref. 20, Proposition 2.6) and so for any $f \in \mathcal{H}$, there is $\{a_i\}_{i \in I} \in l^2(\mathcal{K}, I)$ such that $T_{\Lambda}\{a_i\}_{i \in I} = f$. We define the well-defined operator $U \in B(\mathcal{H})$ by $Uf = T_{\Gamma}\{a_i\}_{i \in I}$. By the inequality (4.1), U is injective. On the other hand, T_{Γ} is also onto and so U is onto. Therefore, $U \in GL(\mathcal{H})$. For any $\{g_i\}_{i \in I} \in l^2(\mathcal{K}, I)$ and $g \in \mathcal{H}$, we have

$$\begin{split} \langle \{g_i\}_{i\in I}, \{(\Gamma_i - \Lambda_i U^*)g\}_{i\in I} \rangle &= \sum_{i\in I} \langle g_i, (\Gamma_i - \Lambda_i U^*)g \rangle \\ &= \sum_{i\in I} \langle \Gamma_i^* g_i, g \rangle - \sum_{i\in I} \langle \Lambda_i^* g_i, U^* g \rangle \\ &= \langle T_{\Gamma} \{g_i\}_{i\in I}, g \rangle - \langle UT_{\Lambda} \{g_i\}_{i\in I}, g \rangle \\ &= \langle UT_{\Lambda} \{g_i\}_{i\in I}, g \rangle - \langle UT_{\Lambda} \{g_i\}_{i\in I}, g \rangle \\ &= 0, \end{split}$$

therefore $\Gamma_i = \Lambda_i U^*, i \in I$ and so if Λ is represented by T, then Γ is represented by $(U^*)^{-1}TU^*$. Indeed, we have

$$\Gamma_i(U^*)^{-1}TU^* = \Lambda_i U^*(U^*)^{-1}TU^* = \Lambda_i TU^* = \Lambda_{i+1}U^* = \Gamma_{i+1}.$$

Proposition 4.2. Suppose that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in I\}$, $(I = \mathbb{N} \text{ or } \mathbb{Z})$ has a representation and $\Gamma = \{\Gamma_i \in B(\mathcal{H}, \mathcal{K}) : i \in I\}$ is a g-frame such that for a constant C > 0,

$$\left\| \sum_{i \in I} (\Lambda_i - \Gamma_i)^* g_i \right\|^2 \le C \cdot \min \left\{ \left\| \sum_{i \in I} \Lambda_i^* g_i \right\|^2, \left\| \sum_{i \in I} \Gamma_i^* g_i \right\|^2 \right\}, \tag{4.2}$$

for $\{g_i\}_{i\in I}\in l^2(\mathcal{K},I)$. Then, Γ has a representation.

Proof. By the inequality (4.2), it is obvious that $\ker T_{\Lambda} = \ker T_{\Gamma}$. So, by the same argument as in the proof of Theorem 4.1, Θ has a representation.

Corollary 4.3. Suppose that a frame $F = \{f_i\}_{i \in I}$, $(I = \mathbb{N} \text{ or } \mathbb{Z})$ has a representation and $G = \{g_i\}_{i \in I}$ is a frame for \mathcal{H} such that for a constant C > 0,

$$\left\| \sum_{i \in I} c_i (f_i - g_i) \right\|^2 \le C. \min \left\{ \left\| \sum_{i \in I} c_i f_i \right\|^2, \left\| \sum_{i \in I} c_i g_i \right\|^2 \right\}, \tag{4.3}$$

for $\{c_i\}_{i\in I}\in l^2(\mathcal{H},I)$. Then, the frame G has a representation.

Proof. By Remark 2.1 and Proposition 4.2, the proof is obvious.

Acknowledgments

The authors would like to thank the referee for valuable comments which have led to an improvement in this manuscript.

References

- A. Aldroubi, C. Cabrelli, U. Molter and S. Tang, Dynamical sampling, Appl. Comput. Harmon. Anal. 42(3) (2017) 378-401.
- A. Aldroubi and A. Petrosyan, Dynamical sampling and systems from iterative actions of operators, in *Frames and Other Bases in Abstract and Function Spaces*, (Birkhäuser, Cham, 2017), pp. 15–26.
- 3. J. P. Antoine, The continuous wavelet transform in image processing, $CWI~Q~{\bf 11}(4)$ (1998) 323–345.
- P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus and G. Velasco, Theory, implementation and applications of nonstationary Gabor frames, J. Comput. Appl. Math. 236(6) (2011) 1481–1496.
- P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25(1) (2008) 114–132.
- O. Christensen, Frame perturbations, in Proc. American Mathematical Society (1995), pp. 1217–1220.
- O. Christensen, An introduction to frames and Riesz bases, in Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2016).
- 8. O. Christensen and M. Hasannasab, An open problem concerning operator representations of frames, preprint (2017), arXiv:1705.00480.
- O. Christensen and M. Hasannasab, Operator representations of frames: Boundedness, duality, and stability, Integr. Equ. Oper. Theory 88(4) (2017) 483

 –499.
- 10. O. Christensen and M. Hasannasab, Frame properties of systems arising via iterated actions of operators, *Appl. Comput. Harmon. Anal.* **46**(3) (2019) 664–673.
- O. Christensen, M. Hasannasab and F. Philipp, Frame properties of operator orbits, preprint (2018), arXiv:1804.03438.
- O. Christensen, M. Hasannasab and E. Rashidi, Dynamical sampling and frame representations with bounded operators, J. Math. Appl. 463(2) (2018) 634–644.
- 13. R. A. DeVore, B. Jawerth and B. J. Lucier, Data compression using wavelets: Error, smoothness and quantization, in *Data Compression Conference*, 1991. DCC'91, IEEE, 1991, pp. 186–195.

- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72(2) (1952) 341–366.
- M. Duval-Destin, M. A. Muschietti and B. Torrésani, Continuous wavelet decompositions, multiresolution, and contrast analysis, SIAM J. Math. Anal. 24(3) (1993) 739–755.
- 16. X. Guo, Perturbations of invertible operators and stability of g-frames in Hilbert spaces, *Results Math.* **64**(3–4) (2013) 405–421.
- D. Han and D. R. Larson, Frames, bases and group representations, Amer. Math. Soc. 697 (2000) 111.
- Y. Khedmati and M. S. Jakobsen, Approximately dual and perturbation results for generalized translation invariant frames on LCA groups, *Int. J. Wavelets Multiresolut. Inf. Process.* 16(3) (2018) 1850017.
- A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342(2) (2008) 1068–1083.
- A. Najati, M. H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topol. 14(3) (2008) 271–286.
- A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iran. Math. Soc. 35 (2011) 97–109.
- 22. G. M. Richter, M. Capacciol, G. Longo and H. Lorenz, Data compression and wavelet transforms, *Symposium-International Astronomical Union*, Vol. 161 (Cambridge University Press, 1994), pp. 219–223.
- 23. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322(1) (2006) 437–452.
- 24. W. Sun, Stability of g-frames, J. Math. Anal. Appl. 326(2) (2007) 858–868.