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Dynamical sampling, as introduced by Aldroubi et al., deals with frame properties of
sequences of the form {T i−1f1}i∈N, where f1 belongs to Hilbert space H and T : H →
H belongs to certain classes of bounded operators. Christensen et al. studied frames
for H with index set N (or Z), that has representations in the form {T i−1f1}i∈N (or
{T if0}i∈Z). As frames of subspaces, fusion frames and generalized translation invariant
systems are the special cases of g-frames, the purpose of this paper is to study and get
sufficient conditions for g-frames Λ = {Λi ∈ B(H,K) : i ∈ N (or Z)} having the form
Λi+1 = Λ1T i, T ∈ B(H) (or Λi+1 = Λ0T i, T ∈ GL(H)). Also, we get the relation
between representations of dual g-frames with index set Z. Finally, we study stability of
g-frame representations under some perturbations.
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1. Introduction

In 1952, the concept of frames for Hilbert spaces was defined by Duffin and Scha-
effer.14 Frames are important tools in the signal/image processing,3,4,15 data com-
pression,13,22 dynamical sampling,1,2 etc.

Throughout this paper, I and J are countable sets, H and K are separable
Hilbert spaces, {Ki : i ∈ I} is a family of separable Hilbert spaces, IdH denotes
the identity operator on H, B(H) and GL(H) denote the set of all bounded linear
operators and the set of all invertible bounded linear operators on H, respectively,
and l2(H, I) = {{gi}i∈I : gi ∈ H,

∑
i∈I ‖gi‖2 < ∞}. Also, we will apply B(H,K) for

the set of all bounded linear operators from H to K. We use kerT and ranT for
the null space and range of T ∈ B(H), respectively. We denote the natural, integer
and complex numbers by N, Z and C, respectively.
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A sequence F = {fi}i∈I in H is called a frame for H, if there exist two constants
AF , BF > 0 such that

AF ‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ BF ‖f‖2, f ∈ H. (1.1)

Let F = {fi}i∈I be a frame for H, then the operator

TF : l2(C, I) → H, TF ({ci}i∈I) =
∑
i∈I

cifi,

is well-defined and onto, also its adjoint is

T ∗
F :H → l2(C, I), T ∗

F f = {〈f, fi〉}i∈I .

The operators TF and T ∗
F are called the synthesis and analysis operators of F,

respectively.
Frames for H allow each f ∈ H to be expanded as an (infinite) linear combi-

nation of the frame elements. A frame G = {gi}i∈I such that for every f ∈ H we
have ∑

i∈I

〈f, fi〉gi = f,

is called dual of frame F = {fi}i∈I . For more on frames, we refer to Refs. 7 and 17.
Aldroubi et al. introduced the concept of dynamical sampling which dealt with

frame properties of sequences of the form {T if1}i∈N, for f1 ∈ H and T :H → H
belonging to certain classes of bounded operators.1,2 Christensen and Hassannasab
analyze frames F = {fi}i∈Z having the form F = {T if0}i∈Z, where T is a bijective
linear operator (not necessarily bounded) on span{fi}i∈Z. They show, (T ∗)−1 is
the only possibility of the representing operator for the duals of the frame F =
{fi}i∈Z = {T if0}i∈Z, T ∈ GL(H).9 They even clarify stability of the representation
of frames. Christensen et al. determine the frames that have a representation with
a bounded operator and survey the properties of this operator.12

Proposition 1.1 (Ref. 10). Consider a frame sequence F = {fi}i∈N in H which
spans an infinite-dimensional subspace. The following is equivalent:

(i) F is linearly independent.
(ii) There exists a linear operator T : span{fi}i∈N → H such that {fi}i∈N =

{T i−1f1}i∈N.

The right-shift operator on l2(H, N) and l2(H, Z), is defined by
T ({ci}i∈N) = (0, c1, c2, . . .) and T ({ci}i∈Z) = {ci−1}i∈Z, respectively. Clearly,

the right-shift operator on l2(H, Z) is unitary and T ∗ is the left-shift operator, i.e.
T ∗({ci}i∈Z) = {ci+1}i∈Z. A subspace V ⊆ l2(H, N) is invariant under the right-shift
operator if T (V ) ⊆ V and a subspace V ⊆ l2(H, Z) is invariant under the right-shift
(left-shift) operator if T (V ) ⊆ V (T ∗(V ) ⊆ V ).

Theorem 1.2 (Ref. 12). Consider a frame F = {fi}i∈N in H. Then the following
is equivalent:
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(i) F has a representation F = {T i−1f1}i∈N for some T ∈ B(H).
(ii) For some dual frame G = {gi}i∈N (and hence all)

fj+1 =
∑
i∈N

〈fj , gi〉fi+1, ∀ j ∈ N.

(iii) The kerTF is invariant under the right-shift operator.

In the affirmative case, let G = {gi}i∈N denote an arbitrary dual frame of F, the
operator T has the form

Tf =
∑
i∈N

〈f, gi〉fi+1, ∀ f ∈ H,

and 1 ≤ ‖T ‖ ≤
√

BF A−1
F .

In 2006, generalized frames (or simply g-frames) and g-Riesz bases were intro-
duced by Sun.23 “G-frames are natural generalizations of frames which cover many
other recent generalizations of frames, e.g. bounded quasi-projectors, frames of sub-
spaces, outer frames, oblique frames, pseudo-frames and a class of time-frequency
localization operators.24 The interest in g-frames arises from the fact that they pro-
vide more choices on analyzing functions than frame expansion coefficients23 and
also every fusion frame is a g-frame5,7”. Generalized translation invariant (GTI)
frames can be realized as g-frames,18 so for motivating to answer the similar prob-
lems relevant to shift invariant and GTI systems in Ref. 8, we generalize some
results of the frame representations with bounded operators in Refs. 9 and 12 to
g-frames. Now, we summarize some facts about g-frames from Refs. 21 and 23. For
more on related subjects to g-frames, we refer to Refs. 16, 19 and 20.

Definition 1.3. We say that Λ = {Λi ∈ B(H,Ki) : i ∈ I} is a generalized frame,
or simply g-frame, for H with respect to {Ki : i ∈ I} if there are two constants
0 < AΛ ≤ BΛ < ∞ such that

AΛ‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ BΛ‖f‖2, f ∈ H. (1.2)

We call AΛ, BΛ the lower and upper g-frame bounds, respectively. Λ is called a
tight g-frame if AΛ = BΛ, and a Parseval g-frame if AΛ = BΛ = 1. If for each i ∈ I,

Ki = K, then, Λ is called a g-frame for H with respect to K. Note that for a family
{Ki}i∈I of Hilbert spaces, there exists a Hilbert space K = ⊕i∈IKi such that for
all i ∈ I, Ki ⊆ K, where ⊕i∈IKi is the direct sum of {Ki}i∈I . A family Λ is called
a g-Bessel family for H with respect to {Ki : i ∈ I} if the right-hand inequality in
(1.2) holds for all f ∈ H, in this case, BΛ is called a g-Bessel bound.

If there is no confusion, we use g-frame (g-Bessel family) instead of g-frame for
H with respect to {Ki : i ∈ I} (g-Bessel family for H with respect to {Ki : i ∈ I}).
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Example 1.4 (Ref. 23). Let {fi}i∈I be a frame for H. Suppose that Λ = {Λi ∈
B(H, C) : i ∈ I}, where

Λif = 〈f, fi〉, f ∈ H.

It is easy to see that Λ is a g-frame.

For a g-frame Λ, there exists a unique positive and invertible operator SΛ :H →
H such that

SΛf =
∑
i∈I

Λ∗
i Λif, f ∈ H,

and AΛ.IdH ≤ SΛ ≤ BΛ.IdH. Consider the space(∑
i∈I

⊕Ki

)
l2

=

{
{gi}i∈I : gi ∈ Ki, i ∈ I and

∑
i∈I

‖gi‖2 < ∞
}

.

It is clear that (
∑

i∈I ⊕Ki)l2 is a Hilbert space with pointwise operations and with
the inner product given by

〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I

〈fi, gi〉.

For a g-Bessl family Λ, the synthesis operator TΛ : (
∑

i∈I ⊕Ki)l2 → H is defined by

TΛ({gi}i∈I) =
∑
i∈I

Λ∗
i gi.

The adjoint of TΛ, T ∗
Λ :H → (

∑
i∈I ⊕Ki)l2 is called the analysis operator of Λ and

is as follows:

T ∗
Λf = {Λif}i∈I , f ∈ H.

It is obvious that SΛ = TΛT ∗
Λ.

Definition 1.5. Two g-frames Λ and Θ are called dual if∑
i∈I

Λ∗
i Θif = f, f ∈ H.

For a g-frame Λ = {Λi ∈ B(H,Ki) : i ∈ I}, the g-frame Λ̃ = {ΛiS
−1
Λ ∈

B(H,Ki) : i ∈ I} is a dual of Λ, which is called the canonical dual.

Definition 1.6. Consider a family Λ = {Λi ∈ B(H,Ki) : i ∈ I}.

(i) We say that Λ is g-complete if {f : Λif = 0, i ∈ I} = {0}.
(ii) We say that Λ is a g-Riesz basis if Λ is g-complete and there are two constants

0 < AΛ ≤ BΛ < ∞ such that for any finite set {gi}i∈In ,

AΛ

∑
i∈In

‖gi‖2 ≤ ‖
∑
i∈In

Λ∗
i gi‖2

≤ BΛ

∑
i∈In

‖gi‖2, gi ∈ Ki.
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(iii) We say that Λ is a g-orthonormal basis if it satisfies the following:

〈Λ∗
i gi, Λ∗

jgj〉 = δi,j〈gi, gj〉, i, j ∈ I, gi ∈ Ki, gj ∈ Kj ,∑
i∈I

‖Λif‖2 = ‖f‖2, f ∈ H.

Theorem 1.7 (Ref. 23). A family Λ = {Λi ∈ B(H,Ki) : i ∈ I} is a g-Riesz
basis if and only if there exist a g-orthonormal basis Θ and U ∈ GL(H) such that
Λi = ΘiU, i ∈ I.

Theorem 1.8 (Ref. 23). Let for i ∈ I, {ei,j}j∈Ji be an orthonormal basis for Ki.

(i) Λ is a g-frame (respectively, g-Bessel family, g-Riesz basis, g-orthonormal basis)
if and only if {Λ∗

i ei,j}i∈I,j∈Ji is a frame (respectively, Bessel sequence, Riesz
basis, orthonormal basis).

(ii) Λ and Θ are dual if and only if {Λ∗
i ei,j}i∈I,j∈Ji and {Θ∗

i ei,j}i∈I,j∈Ji are dual.

In this paper, we generalize some recent results of Christensen et al.9,12 to
investigate representations for g-frames with bounded operators.

2. Representations of G-Frames

In this section, by generalizing some results of Refs. 9 and 12, we introduce repre-
sentations for g-frames with bounded operators and give some examples of g-frames
with a representation and without any representations. In Theorem 2.5, we get suf-
ficient conditions for g-frames to have a representation with a bounded operator.
Also, Theorem 2.5 and Proposition 2.10 show that for g-frames Λ = {Λ1T

i−1 : i ∈
N}, the boundedness of T is equivalent to the invariance of kerTΛ under the right-
shift operator.

Remark 2.1. Consider a frame F = {fi}i∈N = {T i−1f1}i∈N for H with T ∈ B(H).
For the g-frame Λ = {Λi ∈ B(H, C) : i ∈ N} where

Λif = 〈f, fi〉, f ∈ H,

we have

Λi+1f = 〈f, fi+1〉 = 〈f, T fi〉 = 〈T ∗f, fi〉 = ΛiT
∗f, f ∈ H.

Therefore, Λi = Λ1(T ∗)i−1, i ∈ N. Conversely, if we consider a g-frame Λ = {Λi ∈
B(H, C) : i ∈ N} = {Λ1T

i−1 : i ∈ N} for T ∈ B(H), then by the Riesz representation
theorem, Λif = 〈f, fi〉, i ∈ N and f, fi ∈ H, where F = {fi}i∈N is a frame such that
fi = (T ∗)i−1f1, i ∈ N.

Now, we are motivated to study g-frames Λ = {Λi ∈ B(H,K) : i ∈ N}, where
Λi = Λ1T

i−1 with T ∈ B(H).

Definition 2.2. We say that a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} has a repre-
sentation if there is a T ∈ B(H) such that Λi = Λ1T

i−1, i ∈ N. In the affirmative
case, we say that Λ is represented by T .
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In the following, we give some g-frames that have a representation.

Example 2.3. (i) The g-frame of finite elements Λ = {Λi ∈ GL(H) : i = 1, 2} is
represented by Λ−1

1 Λ2.

(ii) The tight g-frame Λ = {Λi ∈ B(H) : i ∈ N} with Λi = 2i−1

3i−2 IdH is represented
by 2

3 IdH.
(iii) Let F = {fi}i∈N = {T i−1f1}i∈N be a frame for H, where T ∈ B(H). Then the

g-frame Λ = {Λi ∈ B(H, C2) : i ∈ N} with Λif = (〈f, fi〉, 〈f, fi+1〉), f ∈ H, is
represented by T ∗.

Now, we give a g-frame without any representations.

Example 2.4. Consider the tight g-frame Λ = {Λn ∈ B(C) : n ∈ N} with
Λn = 1

n4+1 IdC. Since Λ1 = 1
2 IdC and Λ2 = 1

17 IdC, the g-frame Λ has not any
representations.

By generalizing a result of Ref. 10, the following theorem gives sufficient condi-
tions for a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} to have a representation.

Theorem 2.5. Let Λ = {Λi ∈ B(H,K) : i ∈ N} be a g-frame such that for every
finite set {gi}i∈In ⊂ K,

∑
i∈In

Λ∗
i gi = 0 implies gi = 0 for every i ∈ In. Suppose

that kerTΛ is invariant under the right-shift operator. Then, Λ is represented by

T ∈ B(H), where ‖T ‖ ≤
√

BΛA−1
Λ .

Proof. Let {ej}j∈J be an orthonormal basis for K. We define the linear map
S : span{Λ∗

i (K)}i∈N → span{Λ∗
i (K)}i∈N with

S(Λ∗
i ej) = Λ∗

i+1ej .

By the assumption, for any finite index sets In ⊂ N and Jm ⊂ J ,∑
i∈In,j∈Jm

cijΛ∗
i ej =

∑
i∈In

Λ∗
i (
∑

j∈Jm
cijej) = 0 implies

∑
j∈Jm

cijej = 0 and
so cij = 0 for i ∈ In, j ∈ Jm. Therefore, S is well-defined. Now, we show
that S is bounded. Let f =

∑
i∈N,j∈J cijΛ∗

i ej for cij ∈ �2(C, N × J) with
cij = 0, i /∈ In or j /∈ Jm. By Theorem 1.8, F = {Λ∗

i ej}i∈N,j∈J is a frame
for H with lower and upper frame bounds AΛ and BΛ, respectively. We can
write {cij}i∈N,j∈J = {dij}i∈N,j∈J + {rij}i∈N,j∈J with {dij}i∈N,j∈J ∈ kerTF and
{rij}i∈N,j∈J ∈ (kerTF )⊥. Since

∑
i∈N

Λ∗
i

(∑
j∈J dijej

)
=
∑

i∈N,j∈J dijΛ∗
i ej = 0 and

{
∑

j∈J dijej}i∈N ∈ kerTΛ, then by the assumption, we conclude that

∑
i∈N,j∈J

dijΛ∗
i+1ej =

∑
i∈N

Λ∗
i+1

⎛⎝∑
j∈J

dijej

⎞⎠ = 0,

and so the same as in the proof of Ref. 12, we have

‖Sf‖2 =

∥∥∥∥∥∥
∑

i∈N,j∈J

cijΛ∗
i+1ej

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈N,j∈J

rijΛ∗
i+1ej

∥∥∥∥∥∥
2

≤ BΛ

∑
i∈N,j∈J

|rij |2. (2.1)
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Since {rij}i∈N,j∈J ∈ (kerTF )⊥, by Lemma 5.5.5 of Ref. 7, we have

AΛ

∑
i∈N,j∈J

|rij |2 ≤

∥∥∥∥∥∥
∑

i∈N,j∈J

rijΛ∗
i ej

∥∥∥∥∥∥
2

. (2.2)

Therefore, by the inequalities (2.1) and (2.2), we have

‖Sf‖2 ≤ BΛA−1
Λ

∥∥∥∥∥∥
∑

i∈N,j∈J

rijΛ∗
i ej

∥∥∥∥∥∥
2

= BΛA−1
Λ

∥∥∥∥∥∥
∑

i∈N,j∈J

(dij + rij)Λ∗
i ej

∥∥∥∥∥∥
2

= BΛA−1
Λ

∥∥∥∥∥∥
∑

i∈N,j∈J

cijΛ∗
i ej

∥∥∥∥∥∥
2

= BΛA−1
Λ ‖f‖2.

So, S is bounded and can be extended to S̄ ∈ B(H). It is obvious that Λ is repre-

sented by T = (S̄)∗ and ‖T ‖ ≤
√

BΛA−1
Λ . In fact, for every g ∈ K, we have

S̄Λ∗
i g = S̄Λ∗

i

⎛⎝∑
j∈J

cjej

⎞⎠ =
∑
j∈J

cjS̄Λ∗
i ej

=
∑
j∈J

cjSΛ∗
i ej =

∑
j∈J

cjΛ∗
i+1ej

= Λ∗
i+1

⎛⎝∑
j∈J

cjej

⎞⎠ = Λ∗
i+1g, i ∈ N.

Corollary 2.6. Every g-orthonormal basis has a representation.

Proof. For every finite set {gi}i∈In ⊂ K, we have∥∥∥∥∥∑
i∈In

Λ∗
i gi

∥∥∥∥∥
2

=

〈∑
i∈In

Λ∗
i gi,

∑
j∈In

Λ∗
jgj

〉
=
∑
i∈In

∑
j∈In

〈Λ∗
i gi, Λ∗

jgj〉

=
∑
i∈In

〈gi, gi〉 =
∑
i∈In

‖gi‖2.

So
∑

i∈In
Λ∗

i gi = 0 implies gi = 0 for any i ∈ In. Similarly, we have kerTΛ = {0},
that is invariant under the right-shift operator. Then, by Theorem 2.5 the proof is
completed.

Remark 2.7. Consider a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} which is represented
by T . For S ∈ GL(H), the family ΛS = {ΛiS ∈ B(H,K) : i ∈ N} is a g-frame
(Ref. 20, Corollary 2.26), which is represented by S−1TS.

Corollary 2.8. Every g-Riesz basis has a representation.

2050078-7
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Proof. By Theorem 1.7, Corollary 2.6 and Remark 2.7, the proof is completed.

Now, we give an example to show that the converse of Theorem 2.5 is not
satisfied.

Example 2.9. Consider the tight g-frame Λ = {Λi ∈ B(l2(H, N)) : i ∈ N} with
Λi = (1

2 )i−1Idl2(H,N). It is obvious that Λ is represented by 1
2 Idl2(H,N), but Λ∗

1(
1
2e1)+

Λ∗
2(−e1) = 0 for e1 = (1, 0, 0, . . .).

Proposition 2.10. Let a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} be represented by
T . Then kerTΛ is invariant under the right-shift operator T .

Proof. For any {gi}i∈N ∈ kerTΛ, we have

TΛT {gi}i∈N =
∑
i∈N

Λ∗
i+1gi =

∑
i∈N

T ∗Λ∗
i gi = T ∗

(∑
i∈N

Λ∗
i gi

)
= 0.

The following proposition shows that the converse of Theorem 2.5 is satisfied
for one-dimensional Hilbert space K.

Proposition 2.11. Let H and K be infinite-dimensional and one-dimensional
Hilbert spaces, respectively, and a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} be repre-
sented by T . Hence,

∑
i∈In

Λ∗
i gi = 0 implies gi = 0, for any finite set {gi}i∈In ⊂ K.

Proof. Let {e1} be a basis for K. By Theorem 1.8, the sequence F = {Λ∗
i e1}i∈N is

a frame for H. Since the g-frame Λ is represented by T , the frame F is represented
by T ∗, i.e.

Λ∗
i e1 = (T ∗)i−1Λ∗

1e1,

and so by Proposition 1.1, F is linearly independent. We have

0 =
∑
i∈In

Λ∗
i gi =

∑
i∈In

Λ∗
i (αie1) =

∑
i∈In

αiΛ∗
i e1, αi ∈ C,

therefore, for any i ∈ In, αi = 0 and so gi = 0.

Remark 2.12. Proposition 2.11 shows that for one-dimensional Hilbert space K
with basis {e1}, when a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} has a representation,
then the frame {Λ∗

i e1}i∈N has a representation. For a finite-dimensional Hilbert
space K with orthonormal basis {ej}n

j=1, when a g-frame Λ = {Λi ∈ B(H,K) : i ∈
N} is represented by T , then the frame F = {Λ∗

i ej , j = 1, . . . , n}i∈N can be rep-
resented by T ∗ and finite vectors {Λ∗

1e1, . . . , Λ∗
1en}, i.e. F = {(T ∗)i−1Λ∗

1ej , j =
1, . . . , n}i∈N, then it can be worked on g-frames that be represented by a bounded
operator and finite subset of the g-frame. But, Example 2.9 shows that for infinite-
dimensional Hilbert space K = l2(H, N) with orthonormal basis {ej}j∈I , this may
not happen, i.e. a g-frame Λ has a representation and the frame {Λ∗

i ej}i,j∈N does

2050078-8
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not have. By Theorem 1.8, for a g-Riesz basis Λ = {Λi ∈ B(H,K) : i ∈ N}, the
sequence F = {Λ∗

i ej}i∈N,j∈I is a Riesz basis. By Corollary 2.8 and [12, Exam-
ple 2.2], both of Λ and F have representations. What is the relation between these
two representations (open problem)?

Now, we want to discuss the concept of representation for g-frames with index
set Z.

Definition 2.13. We say that a g-frame Λ = {Λi ∈ B(H,K) : i ∈ Z} has a repre-
sentation if there is a T ∈ GL(H) such that Λi = Λ0T

i, i ∈ Z. In the affirmative
case, we say that Λ is represented by T .

Example 2.14. Consider the tight g-frame Λ = {Λn ∈ B(C) : n ∈ Z} with
Λn = 1

n2−2n+4 IdC. Since Λ1 = 1
3 IdC and Λ3 = 1

7 IdC, the g-frame Λ has not any
representation.

A subspace V ⊆ l2(H, Z) is said invariant under the right-shift (left-shift) oper-
ator if T (V ) ⊆ V (T ∗(V ) ⊆ V ).

Theorem 2.15. Let Λ = {Λi ∈ B(H,K) : i ∈ Z} be a g-frame such that for every
finite set {gi}i∈In ⊂ K,

∑
i∈In

Λ∗
i gi = 0 implies gi = 0 for every i ∈ In. Suppose

that kerTΛ is invariant under the right-shift and left-shift operators. Then, Λ is

represented by T ∈ GL(H), where ‖T ‖ ≤
√

BΛA−1
Λ .

Proof. Let {ej}j∈J be an orthonormal basis for K. We define the linear map
S : span{Λ∗

i (K)}i∈Z → span{Λ∗
i (K)}i∈Z with

S(Λ∗
i ej) = Λ∗

i+1ej .

Similar to the proof of the Theorem 2.5, S is well-defined and bounded with ‖S‖ ≤√
BΛA−1

Λ . Consider the linear map S−1 : span{Λ∗
i (K)}i∈Z → span{Λ∗

i (K)}i∈Z with

S−1(Λ∗
i ej) = Λ∗

i−1ej .

Similar to S, the map S−1 is also well-defined and since kerTΛ is invariant under
the left-shift operator, S−1 is bounded. It is obvious that SS−1 = S−1S =
Idspan{Λ∗

i (K)}i∈Z
. The operators S and S−1 can be extended on H. It is obvious

that Λ is represented by T = (S̄)∗, where S̄ ∈ GL(H) is the extension of S and

‖T ‖ ≤
√

BΛA−1
Λ .

Remark 2.16. Note that if Λ = {Λi ∈ B(H,K) : i ∈ Z} is a g-orthonormal basis
or g-Riesz basis, then by Theorem 2.15, Λ has a representation.

Theorem 2.17. Let a g-frame Λ = {Λi ∈ B(H,K) : i ∈ Z} be represented by T,

then kerTΛ is invariant under the right-shift and left-shift operators and

1 ≤ ‖T ‖ ≤
√

BΛA−1
Λ , 1 ≤ ‖T−1‖ ≤

√
BΛA−1

Λ .
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Proof. Similar to Proposition 2.10, kerTΛ is invariant under the right-shift oper-
ator. Also for {gi}i∈Z ∈ kerTΛ,

TΛT ∗{gi}i∈Z =
∑
i∈Z

Λ∗
i−1gi =

∑
i∈Z

(T i−1)∗Λ∗
0gi

= (T−1)∗
(∑

i∈Z

(T i)∗Λ∗
0gi

)

= (T−1)∗
(∑

i∈Z

Λ∗
i gi

)

= (T−1)∗TΛ{gi}i∈Z = 0.

So, kerTΛ is also invariant under the left-shift operator. Now for some fixed n ∈ N

and 0 
= f ∈ H we have

AΛ‖f‖2 ≤
∑
i∈Z

‖Λif‖2 =
∑
i∈Z

‖Λ0T
if‖2 =

∑
i∈Z

‖Λ0T
iT−nT nf‖2

=
∑
i∈Z

‖Λ0T
i−nT nf‖2

=
∑
i∈Z

‖ΛiT
nf‖2

≤ BΛ‖T nf‖2 ≤ BΛ‖T ‖2n‖f‖2,

that implies ‖T ‖ ≥ 1. Since for any i ∈ Z, ΛiT = Λi+1, we have T ∗Λ∗
i ej = Λ∗

i+1ej .
So, T ∗ is the operator S̄ that is defined in the proof of Theorem 2.5, just on

span{Λ∗
i (K)}i∈Z and therefore we have ‖T ‖ ≤

√
BΛA−1

Λ , alike. Since Λ = {Λ−i ∈
B(H,K) : i ∈ Z} = {Λ0(T−1)i : i ∈ Z}, by replacing T−1 instead of T , we get

1 ≤ ‖T−1‖ ≤
√

BΛA−1
Λ .

Example 2.3, (ii) shows that for the index set N, 1 ≤ ‖T ‖ does not happen, in
general.

Corollary 2.18. Let a g-frame Λ = {Λi ∈ B(H,K) : i ∈ Z} be represented by
T ∈ GL(H). Then the following hold:

(i) If Λ is a tight g-frame, then ‖T ‖ = ‖T−1‖ = 1 and so T is isometry.

(ii) ‖S
1
2
ΛTS

−1
2

Λ ‖ = ‖S
1
2
ΛT−1S

−1
2

Λ ‖ = 1.

The authors of Ref. 11 considered sequences in H of the form F = {T if0}i∈I ,
with a linear operator T to study for which bounded operator T and vector f0 ∈
H, F is a frame for H. In Proposition 3.5 of Ref. 12, it was proved that if the
operator T ∈ B(H) is compact, then the sequence {T if0}i∈I cannot be a frame
for infinite-dimensional H. Someone can study these results for family of operators
{Λ0T

i ∈ B(H,K) : i ∈ Z} for T ∈ B(H) and Λ0 ∈ B(H,K).

2050078-10
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3. Representations of Dual G-Frames

The purpose of this section is to get a necessary and sufficient condition for a
g-frame Λ = {Λi ∈ B(H,Ki) : i ∈ N} to have a representation, by applying the
concept of duality. Also, for some g-frames with representation, we get a dual with
representation and in one case without representation. In the end, we get the rela-
tion between representations of dual g-frames with index set Z. The proofs of the
results are similar to Refs. 9 and 12.

Theorem 3.1. A g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} is represented by T if and
only if for a dual Θ = {Θi ∈ B(H,K) : i ∈ N} of Λ (and hence all),

Λk+1 =
∑
i∈N

ΛkΘ∗
i Λi+1.

Proof. First, assume that Λ is represented by T . For any g ∈ K we have

Λ∗
k+1g = T ∗Λ∗

kg = T ∗
(∑

i∈N

Λ∗
i ΘiΛ∗

kg

)

=
∑
i∈N

T ∗Λ∗
i ΘiΛ∗

kg

=
∑
i∈N

Λ∗
i+1ΘiΛ∗

kg

=
∑
i∈N

(ΛkΘ∗
i Λi+1)∗g

=

(∑
i∈N

ΛkΘ∗
i Λi+1

)∗
g,

then, Λk+1 =
∑

i∈N
ΛkΘ∗

i Λi+1.
Conversely, it is obvious that ΛkT = Λk+1 for Tf =

∑
i∈N

Θ∗
i Λi+1f.

Remark 3.2. By Corollary 3.3 of Ref. 23, for a g-Riesz basis Λ = {Λi ∈
B(H,K) : i ∈ N}, we have〈∑

i∈N

ΛkΛ̃∗
i Λi+1f, g

〉
=
∑
i∈N

〈Λ̃∗
i Λi+1f, Λ∗

kg〉

=
∑
i∈N

δi,k〈Λi+1f, g〉 = 〈Λk+1f, g〉, f ∈ H, g ∈ K,

therefore, by Theorem 3.1, Λ has a representation.

In the following, we want to investigate that if a g-frame Λ has a representation,
its duals have representations or not. If so, what is the relation between their
representations?

2050078-11
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Example 3.3. (i) Assume that a g-frame Λ = {Λi ∈ B(H,K) : i ∈ N} is rep-
resented by T . Then, by Remark 2.7, the canonical dual Λ̃ is represented by
SΛTS−1

Λ .

(ii) Consider the g-frame Λ = {Λi ∈ B(H) : i ∈ N} with Λi = (2
3 )iIdH, which is

represented by 2
3 IdH. The g-frame Θ = {Θi ∈ B(H,K) : i ∈ N} with Θi =

(3
4 )iIdH is a dual of Λ which is represented by 3

4 IdH.
(iii) The g-frame of finite elements Λ = {Λi ∈ B(C) : i = 1, 2, 3} with Λi = 2i−1IdC

is represented by 2IdC, but the dual Θ = {Θi ∈ B(C) : i = 1, 2, 3} of Λ with
Θ1 = −2IdC, Θ2 = IdC and Θ3 = 1

4 IdC does not have any representation.
Note that the dual Γ = {Γi ∈ B(C) : i = 1, 2, 3} of Λ with Γi = 1

3 (1
2 )i−1IdC is

represented by 1
2 IdC.

Proposition 3.4. Let a g-frame Λ = {Λi ∈ B(H,K) : i ∈ Z} be represented by
T ∈ GL(H). Then, the canonical dual Λ̃ is represented by SΛTS−1

Λ = (T ∗)−1.

Proof. It is obvious that Λ̃ is represented by SΛTS−1
Λ . For any {gi}i∈Z ∈ l2(K, Z),

T ∗TΛ{gi}i∈Z =
∑
i∈Z

T ∗Λ∗
i gi =

∑
i∈Z

(ΛiT )∗gi =
∑
i∈Z

Λ∗
i+1gi = TΛT {gi}i∈Z.

So, we have

T ∗SΛT = T ∗TΛT ∗
ΛT = T ∗TΛ(T ∗TΛ)∗ = TΛT T ∗T ∗

Λ = TΛT ∗
Λ = SΛ.

Therefore, SΛTS−1
Λ = (T ∗)−1.

Remark 3.5. Let F = {fi}i∈Z and G = {gi}i∈Z be dual frames that are repre-
sented by T, S ∈ GL(H), respectively. Then, by Remark 2.1, the dual g-frames
Λ = {Λi ∈ B(H, C) : i ∈ Z} with Λif = 〈f, fi〉 and Θ = {Θi ∈ B(H, C) : i ∈ Z}
with Θif = 〈f, gi〉 are represented by T ∗, S∗ ∈ GL(H), respectively. By Lemma 3.3
of Ref. 9, S = (T ∗)−1.

The relation between representations of dual g-frames by the index set Z is given
in what follows.

Theorem 3.6. Assume that Λ = {Λi ∈ B(H,K) : i ∈ Z} = {Λ0T
i : i ∈ Z} and Θ =

{Θi ∈ B(H,K) : i ∈ Z} = {Θ0S
i : i ∈ Z} are dual g-frames, where T, S ∈ GL(H).

Then, S = (T ∗)−1.

Proof. For any f ∈ H, we have

f =
∑
i∈Z

Λ∗
i Θif =

∑
i∈Z

(T ∗)iΛ∗
0Θ0S

if

= T ∗∑
i∈Z

(T ∗)i−1Λ∗
0Θ0S

i−1Sf = T ∗∑
i∈Z

Λ∗
i ΘiSf = T ∗Sf.

Since T ∈ GL(H), the proof is completed.

In general, Theorem 3.6 is not true for the index set N (see Example 3.1, (ii)).

2050078-12
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4. Stability of G-Frame Representations

Christensen considered the stability of the frames in Hilbert spaces under perturba-
tions.6 Similar to ordinary frames, Sun proved that g-frames are stable under small
perturbations and have studied the stability of dual g-frames.24 You can find more
perturbation results for g-frames in Ref. 20. In Ref. 9, we find a perturbation con-
dition that preserves the existence of a representation for a frame. In this section,
we study the stability of g-frame representations under some perturbations.

Theorem 4.1. Suppose that a g-frame Λ = {Λi ∈ B(H,K) : i ∈ I}, (I = N or Z)
has a representation and Γ = {Γi ∈ B(H,K) : i ∈ I} is a family of operators such
that for every finite set {gi}i∈In ⊂ K,∥∥∥∥∥∑

i∈In

(Λi − Γi)∗gi

∥∥∥∥∥ ≤ λ

∥∥∥∥∥∑
i∈In

Λ∗
i gi

∥∥∥∥∥+ μ

∥∥∥∥∥∑
i∈In

Γ∗
i gi

∥∥∥∥∥, (4.1)

where 0 ≤ max{λ, μ} < 1. Then, the family Γ is a g-frame that has a representation.

Proof. The family Γ is a g-frame (Ref. 20, Theorem 3.5). By the inequality (4.1),
we get kerTΛ = kerTΓ. The operator TΛ is onto (Ref. 20, Proposition 2.6) and
so for any f ∈ H, there is {ai}i∈I ∈ l2(K, I) such that TΛ{ai}i∈I = f . We define
the well-defined operator U ∈ B(H) by Uf = TΓ{ai}i∈I . By the inequality (4.1),
U is injective. On the other hand, TΓ is also onto and so U is onto. Therefore,
U ∈ GL(H). For any {gi}i∈I ∈ l2(K, I) and g ∈ H ,we have

〈{gi}i∈I , {(Γi − ΛiU
∗)g}i∈I〉 =

∑
i∈I

〈gi, (Γi − ΛiU
∗)g〉

=
∑
i∈I

〈Γ∗
i gi, g〉 −

∑
i∈I

〈Λ∗
i gi, U

∗g〉

= 〈TΓ{gi}i∈I , g〉 − 〈UTΛ{gi}i∈I , g〉

= 〈UTΛ{gi}i∈I , g〉 − 〈UTΛ{gi}i∈I , g〉

= 0,

therefore Γi = ΛiU
∗, i ∈ I and so if Λ is represented by T , then Γ is represented by

(U∗)−1TU∗. Indeed, we have

Γi(U∗)−1TU∗ = ΛiU
∗(U∗)−1TU∗ = ΛiTU∗ = Λi+1U

∗ = Γi+1.

Proposition 4.2. Suppose that a g-frame Λ = {Λi ∈ B(H,K) : i ∈ I}, (I = N or
Z) has a representation and Γ = {Γi ∈ B(H,K) : i ∈ I} is a g-frame such that for
a constant C > 0,∥∥∥∥∥∑

i∈I

(Λi − Γi)∗gi

∥∥∥∥∥
2

≤ C. min

⎧⎨⎩
∥∥∥∥∥∑

i∈I

Λ∗
i gi

∥∥∥∥∥
2

,

∥∥∥∥∥∑
i∈I

Γ∗
i gi

∥∥∥∥∥
2
⎫⎬⎭, (4.2)

for {gi}i∈I ∈ l2(K, I). Then, Γ has a representation.
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Proof. By the inequality (4.2), it is obvious that kerTΛ = kerTΓ. So, by the same
argument as in the proof of Theorem 4.1, Θ has a representation.

Corollary 4.3. Suppose that a frame F = {fi}i∈I , (I = N or Z) has a represen-
tation and G = {gi}i∈I is a frame for H such that for a constant C > 0,∥∥∥∥∥∑

i∈I

ci(fi − gi)

∥∥∥∥∥
2

≤ C. min

⎧⎨⎩
∥∥∥∥∥∑

i∈I

cifi

∥∥∥∥∥
2

,

∥∥∥∥∥∑
i∈I

cigi

∥∥∥∥∥
2
⎫⎬⎭, (4.3)

for {ci}i∈I ∈ l2(H, I). Then, the frame G has a representation.

Proof. By Remark 2.1 and Proposition 4.2, the proof is obvious.
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