

*G***-frame representations with bounded operators**

Yavar Khedmati∗ and Fatemeh Ghobadzadeh†

Department of Mathematics, Faculty of Sciences University of Mohaghegh Ardabili Ardabil 56199-11367, Iran ∗*khedmati.y@uma.ac.ir; khedmatiy.y@gmail.com* † *gobadzadehf@yahoo.com*

> Received 6 March 2020 Revised 4 October 2020 Accepted 21 October 2020 Published 28 December 2020

Dynamical sampling, as introduced by Aldroubi *et al.*, deals with frame properties of sequences of the form ${T^{i-1}f_1}_{i\in\mathbb{N}}$, where f_1 belongs to Hilbert space H and $T: \mathcal{H} \to$ H belongs to certain classes of bounded operators. Christensen et al studied frames for H with index set N (or Z), that has representations in the form $\{T^{i-1}f_1\}_{i\in\mathbb{N}}$ (or ${Tⁱ f₀}_{i \in \mathbb{Z}}$. As frames of subspaces, fusion frames and generalized translation invariant systems are the special cases of *g*-frames, the purpose of this paper is to study and get sufficient conditions for *g*-frames $\Lambda = {\Lambda_i \in B(H,K) : i \in \mathbb{N} \text{ (or } \mathbb{Z})}$ having the form $\Lambda_{i+1} = \Lambda_1 T^i$, $T \in B(H)$ (or $\Lambda_{i+1} = \Lambda_0 T^i$, $T \in GL(H)$). Also, we get the relation between representations of dual *g*-frames with index set ^Z. Finally, we study stability of *g*-frame representations under some perturbations.

Keywords: Representation; *g*-frame; dual; stability.

AMS Subject Classification 2020: 41A58, 42C15, 47A05

1. Introduction

In 1952, the concept of frames for Hilbert spaces was defined by Duffin and Scha-effer.^{[14](#page-14-0)} Frames are important tools in the signal/image processing, $3,4,15$ $3,4,15$ $3,4,15$ data com-pression,^{[13](#page-13-3)[,22](#page-14-2)} dynamical sampling,^{[1](#page-13-4)[,2](#page-13-5)} etc.

Throughout this paper, I and J are countable sets, H and K are separable Hilbert spaces, $\{K_i : i \in I\}$ is a family of separable Hilbert spaces, Id_H denotes the identity operator on H , $B(\mathcal{H})$ and $GL(\mathcal{H})$ denote the set of all bounded linear operators and the set of all invertible bounded linear operators on H , respectively, and $l^2(\mathcal{H}, I) = \{\{g_i\}_{i \in I} : g_i \in \mathcal{H}, \sum_{i \in I} ||g_i||^2 < \infty\}$. Also, we will apply $B(\mathcal{H}, \mathcal{K})$ for the set of all bounded linear operators from H to K . We use ker T and ran T for the null space and range of $T \in B(H)$, respectively. We denote the natural, integer and complex numbers by \mathbb{N}, \mathbb{Z} and \mathbb{C} , respectively.

Y. Khedmati & F. Ghobadzadeh

A sequence $F = \{f_i\}_{i \in I}$ in H is called a frame for H, if there exist two constants $A_F, B_F > 0$ such that

$$
A_F ||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B_F ||f||^2, \quad f \in \mathcal{H}.
$$
 (1.1)

Let $F = \{f_i\}_{i \in I}$ be a frame for H , then the operator

$$
T_F: l^2(\mathbb{C}, I) \to \mathcal{H}, \quad T_F(\{c_i\}_{i \in I}) = \sum_{i \in I} c_i f_i,
$$

is well-defined and onto, also its adjoint is

$$
T_F^* : \mathcal{H} \to l^2(\mathbb{C}, I), \quad T_F^* f = \{ \langle f, f_i \rangle \}_{i \in I}.
$$

The operators T_F and T_F^* are called the synthesis and analysis operators of F , respectively.

Frames for H allow each $f \in H$ to be expanded as an (infinite) linear combination of the frame elements. A frame $G = \{g_i\}_{i \in I}$ such that for every $f \in \mathcal{H}$ we have

$$
\sum_{i \in I} \langle f, f_i \rangle g_i = f,
$$

is called dual of frame $F = \{f_i\}_{i \in I}$. For more on frames, we refer to Refs. [7](#page-13-6) and [17.](#page-14-3)

Aldroubi *et al.* introduced the concept of dynamical sampling which dealt with frame properties of sequences of the form ${T^{i}f_1}_{i \in \mathbb{N}}$, for $f_1 \in \mathcal{H}$ and $T: \mathcal{H} \to \mathcal{H}$ belonging to certain classes of bounded operators.^{[1,](#page-13-4)[2](#page-13-5)} Christensen and Hassannasab analyze frames $F = \{f_i\}_{i \in \mathbb{Z}}$ having the form $F = \{T^i f_0\}_{i \in \mathbb{Z}}$, where T is a bijective linear operator (not necessarily bounded) on span ${f_i}_{i \in \mathbb{Z}}$. They show, $(T^*)^{-1}$ is the only possibility of the representing operator for the duals of the frame $F =$ ${f_i}_{i\in\mathbb{Z}} = {T^i}_{0}$ _{*i*∈Z}, $T \in GL(H)$.^{[9](#page-13-7)} They even clarify stability of the representation of frames. Christensen *et al.* determine the frames that have a representation with a bounded operator and survey the properties of this operator.[12](#page-13-8)

Proposition 1.1 (Ref. [10\)](#page-13-9). *Consider a frame sequence* $F = \{f_i\}_{i \in \mathbb{N}}$ *in* H *which spans an infinite-dimensional subspace. The following is equivalent*:

- (i) F *is linearly independent.*
- (ii) *There exists a linear operator* $T: span{f_i\}_{i \in \mathbb{N}} \to H$ *such that* ${f_i\}_{i \in \mathbb{N}} =$ ${T^{i-1}f_1}_{i \in \mathbb{N}}$.

The right-shift operator on $l^2(\mathcal{H}, \mathbb{N})$ and $l^2(\mathcal{H}, \mathbb{Z})$, is defined by

 $\mathcal{T}(\{c_i\}_{i\in\mathbb{N}}) = (0, c_1, c_2, \ldots)$ and $\mathcal{T}(\{c_i\}_{i\in\mathbb{Z}}) = \{c_{i-1}\}_{i\in\mathbb{Z}}$, respectively. Clearly, the right-shift operator on $l^2(\mathcal{H}, \mathbb{Z})$ is unitary and \mathcal{T}^* is the left-shift operator, i.e. $T^*(\{c_i\}_{i\in\mathbb{Z}}) = \{c_{i+1}\}_{i\in\mathbb{Z}}$. A subspace $V \subseteq l^2(\mathcal{H}, \mathbb{N})$ is invariant under the right-shift operator if $\mathcal{T}(V) \subseteq V$ and a subspace $V \subseteq l^2(\mathcal{H}, \mathbb{Z})$ is invariant under the right-shift (left-shift) operator if $\mathcal{T}(V) \subseteq V$ $(\mathcal{T}^*(V) \subseteq V)$.

Theorem 1.2 (Ref. [12\)](#page-13-8). *Consider a frame* $F = \{f_i\}_{i \in \mathbb{N}}$ *in* H. Then the following *is equivalent*:

- (i) F has a representation $F = \{T^{i-1}f_1\}_{i\in\mathbb{N}}$ for some $T \in B(H)$.
- (ii) *For some dual frame* $G = \{g_i\}_{i \in \mathbb{N}}$ (*and hence all*)

$$
f_{j+1} = \sum_{i \in \mathbb{N}} \langle f_j, g_i \rangle f_{i+1}, \quad \forall j \in \mathbb{N}.
$$

(iii) The ker T_F *is invariant under the right-shift operator.*

In the affirmative case, let $G = \{g_i\}_{i \in \mathbb{N}}$ *denote an arbitrary dual frame of* F, the *operator* T *has the form*

$$
Tf = \sum_{i \in \mathbb{N}} \langle f, g_i \rangle f_{i+1}, \quad \forall f \in \mathcal{H},
$$

 $\text{and } 1 \leq ||T|| \leq \sqrt{B_F A_F^{-1}}.$

In 2006, generalized frames (or simply g -frames) and g -Riesz bases were intro-duced by Sun.^{[23](#page-14-4)} "G-frames are natural generalizations of frames which cover many other recent generalizations of frames, e.g. bounded quasi-projectors, frames of subspaces, outer frames, oblique frames, pseudo-frames and a class of time-frequency localization operators.^{[24](#page-14-5)} The interest in q -frames arises from the fact that they pro-vide more choices on analyzing functions than frame expansion coefficients^{[23](#page-14-4)} and also every fusion frame is a q -frame^{[5,](#page-13-10)[7](#page-13-6)}". Generalized translation invariant (GTI) frames can be realized as g -frames,^{[18](#page-14-6)} so for motivating to answer the similar problems relevant to shift invariant and GTI systems in Ref. [8,](#page-13-11) we generalize some results of the frame representations with bounded operators in Refs. [9](#page-13-7) and [12](#page-13-8) to g-frames. Now, we summarize some facts about g-frames from Refs. [21](#page-14-7) and [23.](#page-14-4) For more on related subjects to *q*-frames, we refer to Refs. [16,](#page-14-8) [19](#page-14-9) and [20.](#page-14-10)

Definition 1.3. We say that $\Lambda = {\Lambda_i \in B(H, K_i) : i \in I}$ is a generalized frame, or simply g-frame, for H with respect to $\{K_i : i \in I\}$ if there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that

$$
A_{\Lambda}||f||^2 \le \sum_{i\in I} \|\Lambda_i f\|^2 \le B_{\Lambda}||f||^2, \quad f \in \mathcal{H}.
$$
 (1.2)

We call A_{Λ}, B_{Λ} the lower and upper g-frame bounds, respectively. A is called a tight g-frame if $A_{\Lambda} = B_{\Lambda}$, and a Parseval g-frame if $A_{\Lambda} = B_{\Lambda} = 1$. If for each $i \in I$, $\mathcal{K}_i = \mathcal{K}$, then, Λ is called a g-frame for \mathcal{H} with respect to \mathcal{K} . Note that for a family $\{\mathcal{K}_i\}_{i\in I}$ of Hilbert spaces, there exists a Hilbert space $\mathcal{K} = \bigoplus_{i\in I} \mathcal{K}_i$ such that for all $i \in I$, $\mathcal{K}_i \subseteq \mathcal{K}$, where $\bigoplus_{i \in I} \mathcal{K}_i$ is the direct sum of $\{\mathcal{K}_i\}_{i \in I}$. A family Λ is called a g-Bessel family for H with respect to $\{K_i : i \in I\}$ if the right-hand inequality in [\(1.2\)](#page-2-0) holds for all $f \in \mathcal{H}$, in this case, B_{Λ} is called a g-Bessel bound.

If there is no confusion, we use q -frame $(q$ -Bessel family) instead of q -frame for H with respect to $\{\mathcal{K}_i : i \in I\}$ (g-Bessel family for H with respect to $\{\mathcal{K}_i : i \in I\}$).

Example 1.4 (Ref. [23\)](#page-14-4). Let $\{f_i\}_{i\in I}$ be a frame for H. Suppose that $\Lambda = \{\Lambda_i \in$ $B(\mathcal{H}, \mathbb{C}) : i \in I$, where

$$
\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H}.
$$

It is easy to see that Λ is a g-frame.

For a g-frame Λ, there exists a unique positive and invertible operator $S_\Lambda : \mathcal{H} \to$ H such that

$$
S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f, \quad f \in \mathcal{H},
$$

and A_{Λ} .Id $_{\mathcal{H}} \leq S_{\Lambda} \leq B_{\Lambda}$.Id $_{\mathcal{H}}$. Consider the space

$$
\left(\sum_{i\in I}\oplus \mathcal{K}_i\right)_{l^2} = \left\{ \{g_i\}_{i\in I} : g_i \in \mathcal{K}_i, i\in I \text{ and } \sum_{i\in I} \|g_i\|^2 < \infty \right\}.
$$

It is clear that $(\sum_{i \in I} \oplus \mathcal{K}_i)_{l^2}$ is a Hilbert space with pointwise operations and with the inner product given by

$$
\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle.
$$

For a g-Bessl family Λ , the synthesis operator T_{Λ} : $(\sum_{i\in I}\oplus\mathcal{K}_i)_{l^2}\to\mathcal{H}$ is defined by

$$
T_{\Lambda}(\{g_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^* g_i.
$$

The adjoint of T_{Λ} , $T_{\Lambda}^* : \mathcal{H} \to (\sum_{i \in I} \oplus \mathcal{K}_i)_{l^2}$ is called the analysis operator of Λ and is as follows:

$$
T_{\Lambda}^* f = \{\Lambda_i f\}_{i \in I}, \quad f \in \mathcal{H}.
$$

It is obvious that $S_{\Lambda} = T_{\Lambda} T_{\Lambda}^*$.

Definition 1.5. Two q-frames Λ and Θ are called dual if

$$
\sum_{i\in I} \Lambda_i^* \Theta_i f = f, \quad f \in \mathcal{H}.
$$

For a g-frame $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i): i \in I}$, the g-frame $\widetilde{\Lambda} = {\Lambda_i S_{\Lambda}^{-1} \in S(\Lambda_i)}$ $B(\mathcal{H}, \mathcal{K}_i): i \in I$ is a dual of Λ , which is called the canonical dual.

Definition 1.6. Consider a family $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i) : i \in I}.$

- (i) We say that Λ is g-complete if $\{f : \Lambda_i f = 0, i \in I\} = \{0\}.$
- (ii) We say that Λ is a g-Riesz basis if Λ is g-complete and there are two constants $0 < A_{\Lambda} \leq B_{\Lambda} < \infty$ such that for any finite set $\{g_i\}_{i \in I_n}$,

$$
A_{\Lambda} \sum_{i \in I_n} ||g_i||^2 \le ||\sum_{i \in I_n} \Lambda_i^* g_i||^2
$$

$$
\le B_{\Lambda} \sum_{i \in I_n} ||g_i||^2, \quad g_i \in \mathcal{K}_i.
$$

2050078-4

(iii) We say that Λ is a q-orthonormal basis if it satisfies the following:

$$
\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in I, \ g_i \in \mathcal{K}_i, \ g_j \in \mathcal{K}_j,
$$

$$
\sum_{i \in I} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.
$$

Theorem 1.7 (Ref. [23\)](#page-14-4). A family $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i): i \in I}$ is a g-Riesz *basis if and only if there exist a* g*-orthonormal basis* Θ *and* U ∈ GL(H) *such that* $\Lambda_i = \Theta_i U, i \in I.$

Theorem 1.8 (Ref. [23\)](#page-14-4). *Let for* $i \in I$, $\{e_{i,j}\}_{j \in J_i}$ *be an orthonormal basis for* \mathcal{K}_i *.*

- (i) Λ *is a* g*-frame* (*respectively*, g*-Bessel family*, g*-Riesz basis*, g*-orthonormal basis*) *if and only if* $\{\Lambda_i^* e_{i,j}\}_{i \in I, j \in J_i}$ *is a frame (respectively, Bessel sequence, Riesz basis*, *orthonormal basis*)*.*
- (ii) Λ *and* Θ *are dual if and only if* $\{\Lambda_i^* e_{i,j}\}_{i \in I, j \in J_i}$ *and* $\{\Theta_i^* e_{i,j}\}_{i \in I, j \in J_i}$ *are dual.*

In this paper, we generalize some recent results of Christensen *et al.*[9,](#page-13-7)[12](#page-13-8) to investigate representations for g-frames with bounded operators.

2. Representations of *G***-Frames**

In this section, by generalizing some results of Refs. [9](#page-13-7) and [12,](#page-13-8) we introduce representations for g-frames with bounded operators and give some examples of g-frames with a representation and without any representations. In Theorem [2.5,](#page-5-0) we get sufficient conditions for g-frames to have a representation with a bounded operator. Also, Theorem [2.5](#page-5-0) and Proposition [2.10](#page-7-0) show that for g-frames $\Lambda = {\Lambda_1 T^{i-1} : i \in \mathbb{R}^n}$ $\mathbb{N}\},$ the boundedness of T is equivalent to the invariance of ker T_{Λ} under the rightshift operator.

Remark 2.1. Consider a frame $F = \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1}f_1\}_{i \in \mathbb{N}}$ for H with $T \in B(H)$. For the g-frame $\Lambda = {\Lambda_i \in B(H, \mathbb{C}) : i \in \mathbb{N}}$ where

$$
\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H},
$$

we have

$$
\Lambda_{i+1}f = \langle f, f_{i+1} \rangle = \langle f, Tf_i \rangle = \langle T^*f, f_i \rangle = \Lambda_i T^*f, \quad f \in \mathcal{H}.
$$

Therefore, $\Lambda_i = \Lambda_1(T^*)^{i-1}, i \in \mathbb{N}$. Conversely, if we consider a g-frame $\Lambda = \{\Lambda_i \in$ $B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N} \} = \{ \Lambda_1 T^{i-1} : i \in \mathbb{N} \}$ for $T \in B(\mathcal{H})$, then by the Riesz representation theorem, $\Lambda_i f = \langle f, f_i \rangle, i \in \mathbb{N}$ and $f, f_i \in \mathcal{H}$, where $F = \{f_i\}_{i \in \mathbb{N}}$ is a frame such that $f_i = (T^*)^{i-1} f_1, i \in \mathbb{N}.$

Now, we are motivated to study g-frames $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{N}}$, where $\Lambda_i = \Lambda_1 T^{i-1}$ with $T \in B(\mathcal{H})$.

Definition 2.2. We say that a g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{N}}$ has a representation if there is a $T \in B(H)$ such that $\Lambda_i = \Lambda_1 T^{i-1}, i \in \mathbb{N}$. In the affirmative case, we say that Λ is represented by T.

In the following, we give some g-frames that have a representation.

- **Example 2.3.** (i) The g-frame of finite elements $\Lambda = {\Lambda_i \in GL(H) : i = 1, 2}$ is represented by $\Lambda_1^{-1}\Lambda_2$.
- (ii) The tight g-frame $\Lambda = {\Lambda_i \in B(H) : i \in \mathbb{N}}$ with $\Lambda_i = \frac{2^{i-1}}{3^{i-2}} \mathrm{Id}_{\mathcal{H}}$ is represented by $\frac{2}{3}$ Id_{\mathcal{H}}.
- (iii) Let $F = \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1}f_1\}_{i \in \mathbb{N}}$ be a frame for H , where $T \in B(H)$. Then the g-frame $\Lambda = {\Lambda_i \in B(H, \mathbb{C}^2) : i \in \mathbb{N}}$ with $\Lambda_i f = (\langle f, f_i \rangle, \langle f, f_{i+1} \rangle), f \in \mathcal{H}$, is represented by T^* .

Now, we give a g-frame without any representations.

Example 2.4. Consider the tight g-frame $\Lambda = {\Lambda_n \in B(\mathbb{C}) : n \in \mathbb{N}}$ with $\Lambda_n = \frac{1}{n^4+1}$ Id_C. Since $\Lambda_1 = \frac{1}{2}$ Id_C and $\Lambda_2 = \frac{1}{17}$ Id_C, the *g*-frame Λ has not any representations.

By generalizing a result of Ref. [10,](#page-13-9) the following theorem gives sufficient conditions for a g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{N}}$ to have a representation.

Theorem 2.5. Let $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{N}}$ be a g-frame such that for every *finite set* $\{g_i\}_{i\in I_n} \subset \mathcal{K}, \sum_{i\in I_n} \Lambda_i^* g_i = 0$ *implies* $g_i = 0$ *for every* $i \in I_n$ *. Suppose that* ker T^Λ *is invariant under the right-shift operator. Then*, Λ *is represented by* $T \in B(\mathcal{H}), \text{ where } ||T|| \leq \sqrt{B_{\Lambda}A_{\Lambda}^{-1}}.$

Proof. Let $\{e_j\}_{j\in J}$ be an orthonormal basis for K. We define the linear map $S: \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{N}} \to \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{N}}$ with

$$
S(\Lambda_i^* e_j) = \Lambda_{i+1}^* e_j.
$$

By the assumption, for any finite index sets $I_n \subset \mathbb{N}$ and $J_m \subset J$, $\sum_{i\in I_n,j\in J_m} c_{ij}\Lambda_i^*e_j = \sum_{i\in I_n}\Lambda_i^*(\sum_{j\in J_m} c_{ij}e_j) = 0$ implies $\sum_{j\in J_m} c_{ij}e_j = 0$ and so $c_{ij} = 0$ for $i \in I_n$, $j \in J_m$. Therefore, S is well-defined. Now, we show that S is bounded. Let $f = \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_i^* e_j$ for $c_{ij} \in \ell^2(\mathbb{C}, \mathbb{N} \times J)$ with $c_{ij} = 0, i \notin I_n$ or $j \notin J_m$. By Theorem [1.8,](#page-4-0) $F = {\Lambda_i^* e_j}_{i \in \mathbb{N}, j \in J}$ is a frame for H with lower and upper frame bounds A_{Λ} and B_{Λ} , respectively. We can write ${c_{ij}}_{i\in\mathbb{N},j\in J} = {d_{ij}}_{i\in\mathbb{N},j\in J} + {r_{ij}}_{i\in\mathbb{N},j\in J}$ with ${d_{ij}}_{i\in\mathbb{N},j\in J} \in \ker T_F$ and $\{r_{ij}\}_{i\in\mathbb{N},j\in J}\in (\ker T_F)^{\perp}$. Since $\sum_{i\in\mathbb{N}}\Lambda_i^*\left(\sum_{j\in J}d_{ij}e_j\right)=\sum_{i\in\mathbb{N},j\in J}d_{ij}\Lambda_i^*e_j=0$ and $\{\sum_{j\in J} d_{ij}e_j\}_{i\in\mathbb{N}} \in \ker T_\Lambda$, then by the assumption, we conclude that

$$
\sum_{i \in \mathbb{N}, j \in J} d_{ij} \Lambda_{i+1}^* e_j = \sum_{i \in \mathbb{N}} \Lambda_{i+1}^* \left(\sum_{j \in J} d_{ij} e_j \right) = 0,
$$

and so the same as in the proof of Ref. [12,](#page-13-8) we have

$$
||Sf||^{2} = \left\| \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_{i+1}^{*} e_{j} \right\|^{2} = \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_{i+1}^{*} e_{j} \right\|^{2} \leq B_{\Lambda} \sum_{i \in \mathbb{N}, j \in J} |r_{ij}|^{2}.
$$
 (2.1)

2050078-6

Since $\{r_{ij}\}_{i\in\mathbb{N},j\in J}\in(\ker T_F)^{\perp}$, by Lemma 5.5.5 of Ref. [7,](#page-13-6) we have

$$
A_{\Lambda} \sum_{i \in \mathbb{N}, j \in J} |r_{ij}|^2 \le \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_i^* e_j \right\|^2.
$$
 (2.2)

Therefore, by the inequalities (2.1) and (2.2) , we have

$$
||Sf||^2 \leq B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} r_{ij} \Lambda_i^* e_j \right\|^2 = B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} (d_{ij} + r_{ij}) \Lambda_i^* e_j \right\|^2
$$

= $B_{\Lambda} A_{\Lambda}^{-1} \left\| \sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_i^* e_j \right\|^2$
= $B_{\Lambda} A_{\Lambda}^{-1} ||f||^2$.

So, S is bounded and can be extended to $\bar{S} \in B(H)$. It is obvious that Λ is represented by $T = (\bar{S})^*$ and $||T|| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$. In fact, for every $g \in \mathcal{K}$, we have

$$
\bar{S}\Lambda_i^* g = \bar{S}\Lambda_i^* \left(\sum_{j \in J} c_j e_j\right) = \sum_{j \in J} c_j \bar{S}\Lambda_i^* e_j
$$

$$
= \sum_{j \in J} c_j S\Lambda_i^* e_j = \sum_{j \in J} c_j \Lambda_{i+1}^* e_j
$$

$$
= \Lambda_{i+1}^* \left(\sum_{j \in J} c_j e_j\right) = \Lambda_{i+1}^* g, \quad i \in \mathbb{N}.
$$

Corollary 2.6. *Every* g*-orthonormal basis has a representation.*

Proof. For every finite set ${g_i}_{i \in I_n} \subset \mathcal{K}$, we have

$$
\left\| \sum_{i \in I_n} \Lambda_i^* g_i \right\|^2 = \left\langle \sum_{i \in I_n} \Lambda_i^* g_i, \sum_{j \in I_n} \Lambda_j^* g_j \right\rangle = \sum_{i \in I_n} \sum_{j \in I_n} \langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle
$$

$$
= \sum_{i \in I_n} \langle g_i, g_i \rangle = \sum_{i \in I_n} ||g_i||^2.
$$

So $\sum_{i\in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$ for any $i \in I_n$. Similarly, we have ker $T_\Lambda = \{0\}$, that is invariant under the right-shift operator. Then, by Theorem [2.5](#page-5-0) the proof is completed. \Box

Remark 2.7. Consider a g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{N}}$ which is represented by T. For $S \in GL(H)$, the family $\Lambda S = {\Lambda_i S \in B(H, K) : i \in \mathbb{N}}$ is a g-frame (Ref. [20,](#page-14-10) Corollary 2.26), which is represented by $S^{-1}TS$.

Corollary 2.8. *Every* g*-Riesz basis has a representation.*

2050078-7

Proof. By Theorem [1.7,](#page-4-1) Corollary [2.6](#page-6-1) and Remark [2.7,](#page-6-2) the proof is completed. \Box

Now, we give an example to show that the converse of Theorem [2.5](#page-5-0) is not satisfied.

Example 2.9. Consider the tight g-frame $\Lambda = {\Lambda_i \in B(l^2(\mathcal{H}, \mathbb{N})) : i \in \mathbb{N}}$ with $\Lambda_i = (\frac{1}{2})^{i-1} \text{Id}_{l^2(\mathcal{H}, \mathbb{N})}$. It is obvious that Λ is represented by $\frac{1}{2} \text{Id}_{l^2(\mathcal{H}, \mathbb{N})}$, but $\Lambda_1^*(\frac{1}{2}e_1)$ + $\Lambda_2^*(-e_1) = 0$ for $e_1 = (1, 0, 0, \ldots).$

Proposition 2.10. Let a g-frame $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{N}}$ be represented by T. Then ker T_{Λ} *is invariant under the right-shift operator* \mathcal{T} *.*

Proof. For any ${g_i}_{i \in \mathbb{N}} \in \ker T_\Lambda$, we have

$$
T_{\Lambda}T\{g_i\}_{i\in\mathbb{N}} = \sum_{i\in\mathbb{N}} \Lambda_{i+1}^* g_i = \sum_{i\in\mathbb{N}} T^* \Lambda_i^* g_i = T^* \left(\sum_{i\in\mathbb{N}} \Lambda_i^* g_i\right) = 0.
$$

The following proposition shows that the converse of Theorem [2.5](#page-5-0) is satisfied for one-dimensional Hilbert space K .

Proposition 2.11. *Let* H *and* K *be infinite-dimensional and one-dimensional Hilbert spaces, respectively, and a g-frame* $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{N}}$ *be repre*sented by T. Hence, $\sum_{i \in I_n} \Lambda_i^* g_i = 0$ implies $g_i = 0$, for any finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}$.

Proof. Let $\{e_1\}$ be a basis for K. By Theorem [1.8,](#page-4-0) the sequence $F = \{\Lambda_i^* e_1\}_{i \in \mathbb{N}}$ is a frame for H. Since the g-frame Λ is represented by T, the frame F is represented by T^* , i.e.

$$
\Lambda_i^* e_1 = (T^*)^{i-1} \Lambda_1^* e_1,
$$

and so by Proposition [1.1,](#page-1-0) F is linearly independent. We have

$$
0 = \sum_{i \in I_n} \Lambda_i^* g_i = \sum_{i \in I_n} \Lambda_i^* (\alpha_i e_1) = \sum_{i \in I_n} \alpha_i \Lambda_i^* e_1, \quad \alpha_i \in \mathbb{C},
$$

 \Box

therefore, for any $i \in I_n$, $\alpha_i = 0$ and so $g_i = 0$.

Remark 2.12. Proposition [2.11](#page-7-1) shows that for one-dimensional Hilbert space \mathcal{K} with basis $\{e_1\}$, when a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}): i \in \mathbb{N}\}\$ has a representation, then the frame $\{\Lambda_i^*e_1\}_{i\in\mathbb{N}}$ has a representation. For a finite-dimensional Hilbert space K with orthonormal basis ${e_j}_{j=1}^n$, when a g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in$ N} is represented by T, then the frame $F = {\Lambda_i^* e_j, j = 1, ..., n}_{i \in \mathbb{N}}$ can be represented by T^* and finite vectors $\{\Lambda_1^*e_1,\ldots,\Lambda_1^*e_n\}$, i.e. $F = \{(T^*)^{i-1}\Lambda_1^*e_j, j =$ $1,\ldots,n\rbrace_{i\in\mathbb{N}}$, then it can be worked on g-frames that be represented by a bounded operator and finite subset of the g-frame. But, Example [2.9](#page-7-2) shows that for infinitedimensional Hilbert space $K = l^2(\mathcal{H}, \mathbb{N})$ with orthonormal basis $\{e_j\}_{j \in I}$, this may not happen, i.e. a *g*-frame Λ has a representation and the frame $\{\Lambda_i^* e_j\}_{i,j\in\mathbb{N}}$ does not have. By Theorem [1.8,](#page-4-0) for a g-Riesz basis $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{N}}$, the sequence $F = {\Lambda_i^* e_j}_{i \in \mathbb{N}, j \in I}$ is a Riesz basis. By Corollary [2.8](#page-6-3) and [\[12,](#page-13-8) Example 2.2], both of Λ and F have representations. What is the relation between these two representations (open problem)?

Now, we want to discuss the concept of representation for q -frames with index set Z.

Definition 2.13. We say that a g-frame $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{Z}}$ has a representation if there is a $T \in GL(H)$ such that $\Lambda_i = \Lambda_0 T^i, i \in \mathbb{Z}$. In the affirmative case, we say that Λ is represented by T.

Example 2.14. Consider the tight g-frame $\Lambda = {\Lambda_n \in B(\mathbb{C}) : n \in \mathbb{Z}}$ with $\Lambda_n = \frac{1}{n^2 - 2n + 4}$ Id_C. Since $\Lambda_1 = \frac{1}{3}$ Id_C and $\Lambda_3 = \frac{1}{7}$ Id_C, the g-frame Λ has not any representation.

A subspace $V \subseteq l^2(\mathcal{H}, \mathbb{Z})$ is said invariant under the right-shift (left-shift) operator if $\mathcal{T}(V) \subset V$ $(\mathcal{T}^*(V) \subset V)$.

Theorem 2.15. *Let* $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{Z}}$ *be a g-frame such that for every finite set* $\{g_i\}_{i\in I_n} \subset \mathcal{K}, \sum_{i\in I_n} \Lambda_i^* g_i = 0$ *implies* $g_i = 0$ *for every* $i \in I_n$ *. Suppose that* ker T_{Λ} *is invariant under the right-shift and left-shift operators. Then,* Λ *is represented by* $T \in GL(\mathcal{H})$, *where* $||T|| \leq \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}$.

Proof. Let $\{e_j\}_{j\in J}$ be an orthonormal basis for K. We define the linear map $S: \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}} \to \text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ with

$$
S(\Lambda_i^* e_j) = \Lambda_{i+1}^* e_j.
$$

 $\sqrt{B_\Lambda A_\Lambda^{-1}}$. Consider the linear map S^{-1} : span $\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ \rightarrow span $\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ with Similar to the proof of the Theorem [2.5,](#page-5-0) S is well-defined and bounded with $||S|| \le$

$$
S^{-1}(\Lambda_i^* e_j) = \Lambda_{i-1}^* e_j.
$$

Similar to S, the map S^{-1} is also well-defined and since ker T_{Λ} is invariant under the left-shift operator, S^{-1} is bounded. It is obvious that $SS^{-1} = S^{-1}S =$ $\mathrm{Id}_{\mathrm{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}}$. The operators S and S^{-1} can be extended on H. It is obvious that Λ is represented by $T = (\bar{S})^*$, where $\bar{S} \in GL(H)$ is the extension of S and $||T|| \leq \sqrt{B_{\Lambda}A_{\Lambda}^{-1}}.$ \Box

Remark 2.16. Note that if $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{Z}}$ is a g-orthonormal basis or g-Riesz basis, then by Theorem [2.15,](#page-8-0) Λ has a representation.

Theorem 2.17. Let a g-frame $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{Z}}$ be represented by T, *then* ker T_{Λ} *is invariant under the right-shift and left-shift operators and*

$$
1 \le ||T|| \le \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}, \quad 1 \le ||T^{-1}|| \le \sqrt{B_{\Lambda} A_{\Lambda}^{-1}}.
$$

Proof. Similar to Proposition [2.10,](#page-7-0) ker T_{Λ} is invariant under the right-shift operator. Also for $\{g_i\}_{i\in\mathbb{Z}} \in \ker T_\Lambda$,

$$
T_{\Lambda}T^*\{g_i\}_{i\in\mathbb{Z}} = \sum_{i\in\mathbb{Z}} \Lambda_{i-1}^* g_i = \sum_{i\in\mathbb{Z}} (T^{i-1})^* \Lambda_0^* g_i
$$

$$
= (T^{-1})^* \left(\sum_{i\in\mathbb{Z}} (T^i)^* \Lambda_0^* g_i\right)
$$

$$
= (T^{-1})^* \left(\sum_{i\in\mathbb{Z}} \Lambda_i^* g_i\right)
$$

$$
= (T^{-1})^* T_{\Lambda} \{g_i\}_{i\in\mathbb{Z}} = 0.
$$

So, ker T_{Λ} is also invariant under the left-shift operator. Now for some fixed $n \in \mathbb{N}$ and $0 \neq f \in \mathcal{H}$ we have

$$
A_{\Lambda}||f||^{2} \leq \sum_{i \in \mathbb{Z}} ||\Lambda_{i}f||^{2} = \sum_{i \in \mathbb{Z}} ||\Lambda_{0}T^{i}f||^{2} = \sum_{i \in \mathbb{Z}} ||\Lambda_{0}T^{i}T^{-n}T^{n}f||^{2}
$$

=
$$
\sum_{i \in \mathbb{Z}} ||\Lambda_{0}T^{i-n}T^{n}f||^{2}
$$

=
$$
\sum_{i \in \mathbb{Z}} ||\Lambda_{i}T^{n}f||^{2}
$$

$$
\leq B_{\Lambda}||T^{n}f||^{2} \leq B_{\Lambda}||T||^{2n}||f||^{2},
$$

that implies $||T|| \geq 1$. Since for any $i \in \mathbb{Z}$, $\Lambda_i T = \Lambda_{i+1}$, we have $T^* \Lambda_i^* e_j = \Lambda_{i+1}^* e_j$. So, T^* is the operator \overline{S} that is defined in the proof of Theorem [2.5,](#page-5-0) just on $\text{span}\{\Lambda_i^*(\mathcal{K})\}_{i\in\mathbb{Z}}$ and therefore we have $||T|| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$, alike. Since $\Lambda = \{\Lambda_{-i} \in \mathbb{Z}\}$ $B(\mathcal{H},\mathcal{K}): i \in \mathbb{Z}$ = { $\Lambda_0(T^{-1})^i : i \in \mathbb{Z}$ }, by replacing T^{-1} instead of T, we get $1 \leq \|T^{-1}\| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}.$ □

Example [2.3,](#page-5-2) (ii) shows that for the index set $\mathbb{N}, 1 \leq ||T||$ does not happen, in general.

Corollary 2.18. Let a g-frame $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{Z}}$ be represented by $T \in GL(H)$ *. Then the following hold:*

(i) If Λ *is a tight g-frame, then* $||T|| = ||T^{-1}|| = 1$ *and so* T *is isometry.* (ii) $\|S_{\Lambda}^{\frac{1}{2}}TS_{\Lambda}^{-\frac{1}{2}}\| = \|S_{\Lambda}^{\frac{1}{2}}T^{-1}S_{\Lambda}^{\frac{-1}{2}}\| = 1.$

The authors of Ref. [11](#page-13-12) considered sequences in H of the form $F = \{T^i f_0\}_{i \in I}$, with a linear operator T to study for which bounded operator T and vector $f_0 \in$ H , F is a frame for H . In Proposition 3.5 of Ref. [12,](#page-13-8) it was proved that if the operator $T \in B(H)$ is compact, then the sequence $\{T^i f_0\}_{i\in I}$ cannot be a frame for infinite-dimensional H . Someone can study these results for family of operators $\{\Lambda_0 T^i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{Z}\}\$ for $T \in B(\mathcal{H})$ and $\Lambda_0 \in B(\mathcal{H}, \mathcal{K})$.

 \Box

3. Representations of Dual *G***-Frames**

The purpose of this section is to get a necessary and sufficient condition for a g-frame $\Lambda = {\Lambda_i \in B(H, \mathcal{K}_i) : i \in \mathbb{N}}$ to have a representation, by applying the concept of duality. Also, for some g-frames with representation, we get a dual with representation and in one case without representation. In the end, we get the relation between representations of dual q-frames with index set \mathbb{Z} . The proofs of the results are similar to Refs. [9](#page-13-7) and [12.](#page-13-8)

Theorem 3.1. *A* g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{N}}$ *is represented by* T *if and only if for a dual* $\Theta = {\Theta_i \in B(H, K) : i \in \mathbb{N}}$ *of* Λ *(and hence all),*

$$
\Lambda_{k+1} = \sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1}.
$$

Proof. First, assume that Λ is represented by T. For any $g \in \mathcal{K}$ we have

$$
\Lambda_{k+1}^* g = T^* \Lambda_k^* g = T^* \left(\sum_{i \in \mathbb{N}} \Lambda_i^* \Theta_i \Lambda_k^* g \right)
$$

=
$$
\sum_{i \in \mathbb{N}} T^* \Lambda_i^* \Theta_i \Lambda_k^* g
$$

=
$$
\sum_{i \in \mathbb{N}} \Lambda_{i+1}^* \Theta_i \Lambda_k^* g
$$

=
$$
\sum_{i \in \mathbb{N}} (\Lambda_k \Theta_i^* \Lambda_{i+1})^* g
$$

=
$$
\left(\sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1} \right)^* g,
$$

then, $\Lambda_{k+1} = \sum_{i \in \mathbb{N}} \Lambda_k \Theta_i^* \Lambda_{i+1}.$

Conversely, it is obvious that $\Lambda_k T = \Lambda_{k+1}$ for $Tf = \sum_{i \in \mathbb{N}} \Theta_i^* \Lambda_{i+1} f$.

Remark 3.2. By Corollary 3.3 of Ref. [23,](#page-14-4) for a g-Riesz basis $\Lambda = {\Lambda_i \in \mathbb{R}^n}$ $B(\mathcal{H}, \mathcal{K}): i \in \mathbb{N}$, we have

$$
\left\langle \sum_{i \in \mathbb{N}} \Lambda_k \widetilde{\Lambda}_i^* \Lambda_{i+1} f, g \right\rangle = \sum_{i \in \mathbb{N}} \langle \widetilde{\Lambda}_i^* \Lambda_{i+1} f, \Lambda_k^* g \rangle
$$

=
$$
\sum_{i \in \mathbb{N}} \delta_{i,k} \langle \Lambda_{i+1} f, g \rangle = \langle \Lambda_{k+1} f, g \rangle, \quad f \in \mathcal{H}, \ g \in \mathcal{K},
$$

therefore, by Theorem [3.1,](#page-10-0) Λ has a representation.

In the following, we want to investigate that if a g -frame Λ has a representation, its duals have representations or not. If so, what is the relation between their representations?

- **Example 3.3.** (i) Assume that a g-frame $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{N}}$ is rep-resented by T. Then, by Remark [2.7,](#page-6-2) the canonical dual Λ is represented by $S_{\Lambda}TS_{\Lambda}^{-1}$.
- (ii) Consider the g-frame $\Lambda = {\Lambda_i \in B(H) : i \in \mathbb{N}}$ with $\Lambda_i = (\frac{2}{3})^i \text{Id}_{\mathcal{H}}$, which is represented by $\frac{2}{3} \text{Id}_{\mathcal{H}}$. The g-frame $\Theta = {\Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}}$ with $\Theta_i =$ $(\frac{3}{4})^i \text{Id}_{\mathcal{H}}$ is a dual of Λ which is represented by $\frac{3}{4} \text{Id}_{\mathcal{H}}$.
- (iii) The g-frame of finite elements $\Lambda = {\Lambda_i \in B(\mathbb{C}) : i = 1, 2, 3}$ with $\Lambda_i = 2^{i-1} \text{Id}_{\mathbb{C}}$ is represented by 2Id_C, but the dual $\Theta = {\Theta_i \in B(\mathbb{C}) : i = 1, 2, 3}$ of Λ with $\Theta_1 = -2\mathrm{Id}_{\mathbb{C}}, \Theta_2 = \mathrm{Id}_{\mathbb{C}}$ and $\Theta_3 = \frac{1}{4}\mathrm{Id}_{\mathbb{C}}$ does not have any representation. Note that the dual $\Gamma = \{\Gamma_i \in B(\mathbb{C}) : i = 1, 2, 3\}$ of Λ with $\Gamma_i = \frac{1}{3}(\frac{1}{2})^{i-1} \mathrm{Id}_{\mathbb{C}}$ is represented by $\frac{1}{2} \text{Id}_{\mathbb{C}}$.

Proposition 3.4. *Let a g-frame* $\Lambda = {\Lambda_i \in B(H,K): i \in \mathbb{Z}}$ *be represented by* $T \in GL(\mathcal{H})$. Then, the canonical dual $\widetilde{\Lambda}$ is represented by $S_{\Lambda}TS_{\Lambda}^{-1} = (T^*)^{-1}$.

Proof. It is obvious that $\tilde{\Lambda}$ is represented by $S_{\Lambda}TS_{\Lambda}^{-1}$. For any $\{g_i\}_{i\in\mathbb{Z}}\in l^2(\mathcal{K},\mathbb{Z}),$

$$
T^*T_{\Lambda}\{g_i\}_{i\in\mathbb{Z}}=\sum_{i\in\mathbb{Z}}T^*\Lambda^*_ig_i=\sum_{i\in\mathbb{Z}}(\Lambda_iT)^*g_i=\sum_{i\in\mathbb{Z}}\Lambda^*_{i+1}g_i=T_{\Lambda}\mathcal{T}\{g_i\}_{i\in\mathbb{Z}}.
$$

So, we have

$$
T^*S_{\Lambda}T = T^*T_{\Lambda}T_{\Lambda}^*T = T^*T_{\Lambda}(T^*T_{\Lambda})^* = T_{\Lambda}T T^*T_{\Lambda}^* = T_{\Lambda}T_{\Lambda}^* = S_{\Lambda}.
$$
 Therefore, $S_{\Lambda}TS_{\Lambda}^{-1} = (T^*)^{-1}$.

Remark 3.5. Let $F = \{f_i\}_{i \in \mathbb{Z}}$ and $G = \{g_i\}_{i \in \mathbb{Z}}$ be dual frames that are represented by $T, S \in GL(H)$, respectively. Then, by Remark [2.1,](#page-4-2) the dual g-frames $\Lambda = {\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{Z}}$ with $\Lambda_i f = \langle f, f_i \rangle$ and $\Theta = {\Theta_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{Z}}$ with $\Theta_i f = \langle f, g_i \rangle$ are represented by $T^*, S^* \in GL(\mathcal{H})$, respectively. By Lemma 3.3 of Ref. [9,](#page-13-7) $S = (T^*)^{-1}$.

The relation between representations of dual q -frames by the index set $\mathbb Z$ is given in what follows.

Theorem 3.6. *Assume that* $\Lambda = {\Lambda_i \in B(H, K) : i \in \mathbb{Z}} = {\Lambda_0T^i : i \in \mathbb{Z}}$ *and* $\Theta =$ $\{\Theta_i \in B(\mathcal{H}, \mathcal{K}): i \in \mathbb{Z}\} = \{\Theta_0 S^i : i \in \mathbb{Z}\}$ are dual g-frames, where $T, S \in GL(\mathcal{H})$. *Then,* $S = (T^*)^{-1}$ *.*

Proof. For any $f \in \mathcal{H}$, we have

$$
f = \sum_{i \in \mathbb{Z}} \Lambda_i^* \Theta_i f = \sum_{i \in \mathbb{Z}} (T^*)^i \Lambda_0^* \Theta_0 S^i f
$$

=
$$
T^* \sum_{i \in \mathbb{Z}} (T^*)^{i-1} \Lambda_0^* \Theta_0 S^{i-1} S f = T^* \sum_{i \in \mathbb{Z}} \Lambda_i^* \Theta_i S f = T^* S f.
$$

Since $T \in GL(H)$, the proof is completed.

In general, Theorem [3.6](#page-11-0) is not true for the index set $\mathbb N$ (see Example [3.1,](#page-10-0) (ii)).

 \Box

 \Box

4. Stability of *G***-Frame Representations**

Christensen considered the stability of the frames in Hilbert spaces under perturbations.[6](#page-13-13) Similar to ordinary frames, Sun proved that g-frames are stable under small perturbations and have studied the stability of dual g-frames.[24](#page-14-5) You can find more perturbation results for g-frames in Ref. [20.](#page-14-10) In Ref. [9,](#page-13-7) we find a perturbation condition that preserves the existence of a representation for a frame. In this section, we study the stability of g-frame representations under some perturbations.

Theorem 4.1. *Suppose that a g-frame* $\Lambda = {\Lambda_i \in B(H,K): i \in I}, (I = N \text{ or } \mathbb{Z})$ *has a representation and* $\Gamma = {\lbrace \Gamma_i \in B(H,K) : i \in I \rbrace}$ *is a family of operators such that for every finite set* $\{g_i\}_{i \in I_n} \subset \mathcal{K}$,

$$
\left\| \sum_{i \in I_n} (\Lambda_i - \Gamma_i)^* g_i \right\| \le \lambda \left\| \sum_{i \in I_n} \Lambda_i^* g_i \right\| + \mu \left\| \sum_{i \in I_n} \Gamma_i^* g_i \right\|,
$$
\n(4.1)

where $0 \leq \max\{\lambda, \mu\} < 1$. Then, the family Γ is a g-frame that has a representation.

Proof. The family Γ is a g-frame (Ref. [20,](#page-14-10) Theorem 3.5). By the inequality [\(4.1\)](#page-12-0), we get ker $T_{\Lambda} = \ker T_{\Gamma}$. The operator T_{Λ} is onto (Ref. [20,](#page-14-10) Proposition 2.6) and so for any $f \in H$, there is $\{a_i\}_{i \in I} \in l^2(\mathcal{K}, I)$ such that $T_{\Lambda}\{a_i\}_{i \in I} = f$. We define the well-defined operator $U \in B(H)$ by $Uf = T_{\Gamma}\{a_i\}_{i \in I}$. By the inequality [\(4.1\)](#page-12-0), U is injective. On the other hand, T_{Γ} is also onto and so U is onto. Therefore, $U \in GL(\mathcal{H})$. For any $\{g_i\}_{i \in I} \in l^2(\mathcal{K}, I)$ and $g \in \mathcal{H}$, we have

$$
\langle \{g_i\}_{i\in I}, \{(\Gamma_i - \Lambda_i U^*)g\}_{i\in I}\rangle = \sum_{i\in I} \langle g_i, (\Gamma_i - \Lambda_i U^*)g \rangle
$$

$$
= \sum_{i\in I} \langle \Gamma_i^* g_i, g \rangle - \sum_{i\in I} \langle \Lambda_i^* g_i, U^* g \rangle
$$

$$
= \langle T_{\Gamma} \{g_i\}_{i\in I}, g \rangle - \langle U T_{\Lambda} \{g_i\}_{i\in I}, g \rangle
$$

$$
= \langle U T_{\Lambda} \{g_i\}_{i\in I}, g \rangle - \langle U T_{\Lambda} \{g_i\}_{i\in I}, g \rangle
$$

$$
= 0,
$$

therefore $\Gamma_i = \Lambda_i U^*, i \in I$ and so if Λ is represented by T, then Γ is represented by $(U^*)^{-1}TU^*$. Indeed, we have

$$
\Gamma_i(U^*)^{-1}TU^* = \Lambda_i U^*(U^*)^{-1}TU^* = \Lambda_i TU^* = \Lambda_{i+1}U^* = \Gamma_{i+1}.
$$

Proposition 4.2. Suppose that a g-frame $\Lambda = {\Lambda_i \in B(H,K): i \in I}, (I = N \text{ or } I)$ \mathbb{Z}) has a representation and $\Gamma = {\lbrace \Gamma_i \in B(H,\mathcal{K}) : i \in I \rbrace}$ is a g-frame such that for *a* constant $C > 0$,

$$
\left\| \sum_{i \in I} (\Lambda_i - \Gamma_i)^* g_i \right\|^2 \le C \cdot \min \left\{ \left\| \sum_{i \in I} \Lambda_i^* g_i \right\|^2, \left\| \sum_{i \in I} \Gamma_i^* g_i \right\|^2 \right\},\tag{4.2}
$$

for ${g_i}_{i \in I} \in l^2(\mathcal{K}, I)$ *. Then,* Γ *has a representation.*

Proof. By the inequality [\(4.2\)](#page-12-1), it is obvious that ker $T_{\Lambda} = \ker T_{\Gamma}$. So, by the same argument as in the proof of Theorem [4.1,](#page-12-2) Θ has a representation. \Box

Corollary 4.3. Suppose that a frame $F = \{f_i\}_{i \in I}$, $(I = N \text{ or } \mathbb{Z})$ has a represen*tation and* $G = \{g_i\}_{i \in I}$ *is a frame for* H *such that for a constant* $C > 0$,

$$
\left\| \sum_{i \in I} c_i (f_i - g_i) \right\|^2 \le C \cdot \min \left\{ \left\| \sum_{i \in I} c_i f_i \right\|^2, \left\| \sum_{i \in I} c_i g_i \right\|^2 \right\},\tag{4.3}
$$

for $\{c_i\}_{i \in I} \in l^2(\mathcal{H}, I)$ *. Then, the frame G has a representation.*

Proof. By Remark [2.1](#page-4-2) and Proposition [4.2,](#page-12-3) the proof is obvious.

 \Box

Acknowledgments

The authors would like to thank the referee for valuable comments which have led to an improvement in this manuscript.

References

- 1. A. Aldroubi, C. Cabrelli, U. Molter and S. Tang, Dynamical sampling, *Appl. Comput. Harmon. Anal.* **42**(3) (2017) 378–401.
- 2. A. Aldroubi and A. Petrosyan, Dynamical sampling and systems from iterative actions of operators, in *Frames and Other Bases in Abstract and Function Spaces*, (Birkhäuser, Cham, 2017), pp. 15–26.
- 3. J. P. Antoine, The continuous wavelet transform in image processing, *CWI Q* **11**(4) (1998) 323–345.
- 4. P. Balazs, M. Dörfler, F. Jaillet, N. Holighaus and G. Velasco, Theory, implementation and applications of nonstationary Gabor frames, *J. Comput. Appl. Math.* **236**(6) (2011) 1481–1496.
- 5. P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, *Appl. Comput. Harmon. Anal.* **25**(1) (2008) 114–132.
- 6. O. Christensen, Frame perturbations, in *Proc. American Mathematical Society* (1995), pp. 1217–1220.
- 7. O. Christensen, An introduction to frames and Riesz bases, in *Applied and Numerical Harmonic Analysis* (Birkhäuser, Boston, 2016).
- 8. O. Christensen and M. Hasannasab, An open problem concerning operator representations of frames, preprint (2017), arXiv:1705.00480.
- 9. O. Christensen and M. Hasannasab, Operator representations of frames: Boundedness, duality, and stability, *Integr. Equ. Oper. Theory* **88**(4) (2017) 483–499.
- 10. O. Christensen and M. Hasannasab, Frame properties of systems arising via iterated actions of operators, *Appl. Comput. Harmon. Anal.* **46**(3) (2019) 664–673.
- 11. O. Christensen, M. Hasannasab and F. Philipp, Frame properties of operator orbits, preprint (2018), arXiv:1804.03438.
- 12. O. Christensen, M. Hasannasab and E. Rashidi, Dynamical sampling and frame representations with bounded operators, *J. Math. Anal. Appl.* **463**(2) (2018) 634–644.
- 13. R. A. DeVore, B. Jawerth and B. J. Lucier, Data compression using wavelets: Error, smoothness and quantization, in *Data Compression Conference, 1991. DCC*'91, IEEE, 1991, pp. 186–195.
- 14. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* **72**(2) (1952) 341–366.
- 15. M. Duval-Destin, M. A. Muschietti and B. Torrésani, Continuous wavelet decompositions, multiresolution, and contrast analysis, *SIAM J. Math. Anal.* **24**(3) (1993) 739–755.
- 16. X. Guo, Perturbations of invertible operators and stability of g-frames in Hilbert spaces, *Results Math.* **64**(3–4) (2013) 405–421.
- 17. D. Han and D. R. Larson, Frames, bases and group representations, *Amer. Math. Soc.* **697** (2000) 111.
- 18. Y. Khedmati and M. S. Jakobsen, Approximately dual and perturbation results for generalized translation invariant frames on LCA groups, *Int. J. Wavelets Multiresolut. Inf. Process.* **16**(3) (2018) 1850017.
- 19. A. Khosravi and K. Musazadeh, Fusion frames and g-frames, *J. Math. Anal. Appl.* **342**(2) (2008) 1068–1083.
- 20. A. Najati, M. H. Faroughi and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, *Methods Funct. Anal. Topol.* **14**(3) (2008) 271–286.
- 21. A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, *Bull. Iran. Math. Soc.* **35** (2011) 97–109.
- 22. G. M. Richter, M. Capacciol, G. Longo and H. Lorenz, Data compression and wavelet transforms, *Symposium-International Astronomical Union*, Vol. 161 (Cambridge University Press, 1994), pp. 219–223.
- 23. W. Sun, G-frames and g-Riesz bases, *J. Math. Anal. Appl.* **322**(1) (2006) 437–452.
- 24. W. Sun, Stability of g-frames, *J. Math. Anal. Appl.* **326**(2) (2007) 858–868.